Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Jul 1;17(13):3587–3596. doi: 10.1093/emboj/17.13.3587

p53 facilitates pRb cleavage in IL-3-deprived cells: novel pro-apoptotic activity of p53.

E Gottlieb 1, M Oren 1
PMCID: PMC1170695  PMID: 9649429

Abstract

In the interleukin-3 (IL-3)-dependent lymphoid cell line DA-1, functional p53 is required for efficient apoptosis in response to IL-3 withdrawal. Activation of p53 in these cells, by either DNA damage or p53 overexpression, results in a vital growth arrest in the presence of IL-3 and in accelerated apoptosis in its absence. Thus, IL-3 can control the choice between p53-dependent cell-cycle arrest and apoptosis. Here we report that the cross-talk between p53 and IL-3 involves joint control of pRb cleavage and degradation. Depletion of IL-3 results in caspase-mediated pRb cleavage, occurring preferentially within cells which express functional p53. Moreover, pRb can be cleaved efficiently by extracts prepared from DA-1 cells but not from their derivatives which lack p53 function. Inactivation of pRb through expression of the human papillomavirus (HPV) E7 oncogene overrides the effect of IL-3 in a p53-dependent manner. Our data suggest a novel role for p53 in the regulation of cell death and a novel mechanism for the cooperation between p53 and survival factor deprivation. Thus, p53 makes cells permissive to pRb cleavage, probably by controlling the potential activity of a pRb-cleaving caspase, whereas IL-3 withdrawal provides signals that turn on this potential activity and lead to the actual cleavage and subsequent degradation of pRb. Elimination of a presumptive anti-apoptotic effect of pRb may then facilitate conversion of p53-mediated growth arrest into apoptosis.

Full Text

The Full Text of this article is available as a PDF (271.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamson J. L., Lee J. M., Bernstein A. Regulation of p53-mediated apoptosis and cell cycle arrest by Steel factor. Mol Cell Biol. 1995 Dec;15(12):6953–6960. doi: 10.1128/mcb.15.12.6953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Almasan A., Yin Y., Kelly R. E., Lee E. Y., Bradley A., Li W., Bertino J. R., Wahl G. M. Deficiency of retinoblastoma protein leads to inappropriate S-phase entry, activation of E2F-responsive genes, and apoptosis. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5436–5440. doi: 10.1073/pnas.92.12.5436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. An B., Dou Q. P. Cleavage of retinoblastoma protein during apoptosis: an interleukin 1 beta-converting enzyme-like protease as candidate. Cancer Res. 1996 Feb 1;56(3):438–442. [PubMed] [Google Scholar]
  4. Attardi L. D., Lowe S. W., Brugarolas J., Jacks T. Transcriptional activation by p53, but not induction of the p21 gene, is essential for oncogene-mediated apoptosis. EMBO J. 1996 Jul 15;15(14):3693–3701. [PMC free article] [PubMed] [Google Scholar]
  5. Bates S., Vousden K. H. p53 in signaling checkpoint arrest or apoptosis. Curr Opin Genet Dev. 1996 Feb;6(1):12–18. doi: 10.1016/s0959-437x(96)90004-0. [DOI] [PubMed] [Google Scholar]
  6. Berry D. E., Lu Y., Schmidt B., Fallon P. G., O'Connell C., Hu S. X., Xu H. J., Blanck G. Retinoblastoma protein inhibits IFN-gamma induced apoptosis. Oncogene. 1996 Apr 18;12(8):1809–1819. [PubMed] [Google Scholar]
  7. Blandino G., Scardigli R., Rizzo M. G., Crescenzi M., Soddu S., Sacchi A. Wild-type p53 modulates apoptosis of normal, IL-3 deprived, hematopoietic cells. Oncogene. 1995 Feb 16;10(4):731–737. [PubMed] [Google Scholar]
  8. Caelles C., Helmberg A., Karin M. p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature. 1994 Jul 21;370(6486):220–223. doi: 10.1038/370220a0. [DOI] [PubMed] [Google Scholar]
  9. Canman C. E., Gilmer T. M., Coutts S. B., Kastan M. B. Growth factor modulation of p53-mediated growth arrest versus apoptosis. Genes Dev. 1995 Mar 1;9(5):600–611. doi: 10.1101/gad.9.5.600. [DOI] [PubMed] [Google Scholar]
  10. Canman C. E., Kastan M. B. Role of p53 in apoptosis. Adv Pharmacol. 1997;41:429–460. doi: 10.1016/s1054-3589(08)61068-6. [DOI] [PubMed] [Google Scholar]
  11. Chen W. D., Otterson G. A., Lipkowitz S., Khleif S. N., Coxon A. B., Kaye F. J. Apoptosis is associated with cleavage of a 5 kDa fragment from RB which mimics dephosphorylation and modulates E2F binding. Oncogene. 1997 Mar 13;14(10):1243–1248. doi: 10.1038/sj.onc.1201096. [DOI] [PubMed] [Google Scholar]
  12. Clarke A. R., Maandag E. R., van Roon M., van der Lugt N. M., van der Valk M., Hooper M. L., Berns A., te Riele H. Requirement for a functional Rb-1 gene in murine development. Nature. 1992 Sep 24;359(6393):328–330. doi: 10.1038/359328a0. [DOI] [PubMed] [Google Scholar]
  13. Cobrinik D., Lee M. H., Hannon G., Mulligan G., Bronson R. T., Dyson N., Harlow E., Beach D., Weinberg R. A., Jacks T. Shared role of the pRB-related p130 and p107 proteins in limb development. Genes Dev. 1996 Jul 1;10(13):1633–1644. doi: 10.1101/gad.10.13.1633. [DOI] [PubMed] [Google Scholar]
  14. Cohen G. M. Caspases: the executioners of apoptosis. Biochem J. 1997 Aug 15;326(Pt 1):1–16. doi: 10.1042/bj3260001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Collins M. K., Marvel J., Malde P., Lopez-Rivas A. Interleukin 3 protects murine bone marrow cells from apoptosis induced by DNA damaging agents. J Exp Med. 1992 Oct 1;176(4):1043–1051. doi: 10.1084/jem.176.4.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Davies R., Hicks R., Crook T., Morris J., Vousden K. Human papillomavirus type 16 E7 associates with a histone H1 kinase and with p107 through sequences necessary for transformation. J Virol. 1993 May;67(5):2521–2528. doi: 10.1128/jvi.67.5.2521-2528.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Debbas M., White E. Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev. 1993 Apr;7(4):546–554. doi: 10.1101/gad.7.4.546. [DOI] [PubMed] [Google Scholar]
  18. Edmonds C., Vousden K. H. A point mutational analysis of human papillomavirus type 16 E7 protein. J Virol. 1989 Jun;63(6):2650–2656. doi: 10.1128/jvi.63.6.2650-2656.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fan G., Ma X., Kren B. T., Steer C. J. The retinoblastoma gene product inhibits TGF-beta1 induced apoptosis in primary rat hepatocytes and human HuH-7 hepatoma cells. Oncogene. 1996 May 2;12(9):1909–1919. [PubMed] [Google Scholar]
  20. Field S. J., Tsai F. Y., Kuo F., Zubiaga A. M., Kaelin W. G., Jr, Livingston D. M., Orkin S. H., Greenberg M. E. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell. 1996 May 17;85(4):549–561. doi: 10.1016/s0092-8674(00)81255-6. [DOI] [PubMed] [Google Scholar]
  21. Fromm L., Shawlot W., Gunning K., Butel J. S., Overbeek P. A. The retinoblastoma protein-binding region of simian virus 40 large T antigen alters cell cycle regulation in lenses of transgenic mice. Mol Cell Biol. 1994 Oct;14(10):6743–6754. doi: 10.1128/mcb.14.10.6743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gajewski T. F., Thompson C. B. Apoptosis meets signal transduction: elimination of a BAD influence. Cell. 1996 Nov 15;87(4):589–592. doi: 10.1016/s0092-8674(00)81377-x. [DOI] [PubMed] [Google Scholar]
  23. Gorospe M., Cirielli C., Wang X., Seth P., Capogrossi M. C., Holbrook N. J. p21(Waf1/Cip1) protects against p53-mediated apoptosis of human melanoma cells. Oncogene. 1997 Feb 27;14(8):929–935. doi: 10.1038/sj.onc.1200897. [DOI] [PubMed] [Google Scholar]
  24. Gottlieb E., Haffner R., von Rüden T., Wagner E. F., Oren M. Down-regulation of wild-type p53 activity interferes with apoptosis of IL-3-dependent hematopoietic cells following IL-3 withdrawal. EMBO J. 1994 Mar 15;13(6):1368–1374. doi: 10.1002/j.1460-2075.1994.tb06390.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Gottlieb E., Lindner S., Oren M. Relationship of sequence-specific transactivation and p53-regulated apoptosis in interleukin 3-dependent hematopoietic cells. Cell Growth Differ. 1996 Mar;7(3):301–310. [PubMed] [Google Scholar]
  26. Gottlieb T. M., Oren M. p53 in growth control and neoplasia. Biochim Biophys Acta. 1996 Jun 7;1287(2-3):77–102. doi: 10.1016/0304-419x(95)00019-c. [DOI] [PubMed] [Google Scholar]
  27. Haas-Kogan D. A., Kogan S. C., Levi D., Dazin P., T'Ang A., Fung Y. K., Israel M. A. Inhibition of apoptosis by the retinoblastoma gene product. EMBO J. 1995 Feb 1;14(3):461–472. doi: 10.1002/j.1460-2075.1995.tb07022.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hansen R., Oren M. p53; from inductive signal to cellular effect. Curr Opin Genet Dev. 1997 Feb;7(1):46–51. doi: 10.1016/s0959-437x(97)80108-6. [DOI] [PubMed] [Google Scholar]
  29. Hansen R., Reddel R., Braithwaite A. The transforming oncoproteins determine the mechanism by which p53 suppresses cell transformation: pRb-mediated growth arrest or apoptosis. Oncogene. 1995 Dec 21;11(12):2535–2545. [PubMed] [Google Scholar]
  30. Haupt Y., Rowan S., Oren M. p53-mediated apoptosis in HeLa cells can be overcome by excess pRB. Oncogene. 1995 Apr 20;10(8):1563–1571. [PubMed] [Google Scholar]
  31. Haupt Y., Rowan S., Shaulian E., Vousden K. H., Oren M. Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes Dev. 1995 Sep 1;9(17):2170–2183. doi: 10.1101/gad.9.17.2170. [DOI] [PubMed] [Google Scholar]
  32. Herwig S., Strauss M. The retinoblastoma protein: a master regulator of cell cycle, differentiation and apoptosis. Eur J Biochem. 1997 Jun 15;246(3):581–601. doi: 10.1111/j.1432-1033.1997.t01-2-00581.x. [DOI] [PubMed] [Google Scholar]
  33. Hiebert S. W., Packham G., Strom D. K., Haffner R., Oren M., Zambetti G., Cleveland J. L. E2F-1:DP-1 induces p53 and overrides survival factors to trigger apoptosis. Mol Cell Biol. 1995 Dec;15(12):6864–6874. doi: 10.1128/mcb.15.12.6864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Howes K. A., Ransom N., Papermaster D. S., Lasudry J. G., Albert D. M., Windle J. J. Apoptosis or retinoblastoma: alternative fates of photoreceptors expressing the HPV-16 E7 gene in the presence or absence of p53. Genes Dev. 1994 Jun 1;8(11):1300–1310. doi: 10.1101/gad.8.11.1300. [DOI] [PubMed] [Google Scholar]
  35. Ihle J. N. Biochemical and biological properties of interleukin-3: a lymphokine mediating the differentiation of a lineage of cells that includes prothymocytes and mastlike cells. Contemp Top Mol Immunol. 1985;10:93–119. doi: 10.1007/978-1-4684-4838-2_4. [DOI] [PubMed] [Google Scholar]
  36. Ishioka C., Englert C., Winge P., Yan Y. X., Engelstein M., Friend S. H. Mutational analysis of the carboxy-terminal portion of p53 using both yeast and mammalian cell assays in vivo. Oncogene. 1995 Apr 20;10(8):1485–1492. [PubMed] [Google Scholar]
  37. Jacks T., Fazeli A., Schmitt E. M., Bronson R. T., Goodell M. A., Weinberg R. A. Effects of an Rb mutation in the mouse. Nature. 1992 Sep 24;359(6393):295–300. doi: 10.1038/359295a0. [DOI] [PubMed] [Google Scholar]
  38. Jänicke R. U., Walker P. A., Lin X. Y., Porter A. G. Specific cleavage of the retinoblastoma protein by an ICE-like protease in apoptosis. EMBO J. 1996 Dec 16;15(24):6969–6978. [PMC free article] [PubMed] [Google Scholar]
  39. Karasuyama H., Melchers F. Establishment of mouse cell lines which constitutively secrete large quantities of interleukin 2, 3, 4 or 5, using modified cDNA expression vectors. Eur J Immunol. 1988 Jan;18(1):97–104. doi: 10.1002/eji.1830180115. [DOI] [PubMed] [Google Scholar]
  40. Ko L. J., Prives C. p53: puzzle and paradigm. Genes Dev. 1996 May 1;10(9):1054–1072. doi: 10.1101/gad.10.9.1054. [DOI] [PubMed] [Google Scholar]
  41. Lane D. P. Cancer. p53, guardian of the genome. Nature. 1992 Jul 2;358(6381):15–16. doi: 10.1038/358015a0. [DOI] [PubMed] [Google Scholar]
  42. Lee E. Y., Chang C. Y., Hu N., Wang Y. C., Lai C. C., Herrup K., Lee W. H., Bradley A. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature. 1992 Sep 24;359(6393):288–294. doi: 10.1038/359288a0. [DOI] [PubMed] [Google Scholar]
  43. Lee M. H., Williams B. O., Mulligan G., Mukai S., Bronson R. T., Dyson N., Harlow E., Jacks T. Targeted disruption of p107: functional overlap between p107 and Rb. Genes Dev. 1996 Jul 1;10(13):1621–1632. doi: 10.1101/gad.10.13.1621. [DOI] [PubMed] [Google Scholar]
  44. Levine A. J. p53, the cellular gatekeeper for growth and division. Cell. 1997 Feb 7;88(3):323–331. doi: 10.1016/s0092-8674(00)81871-1. [DOI] [PubMed] [Google Scholar]
  45. Lin Y., Benchimol S. Cytokines inhibit p53-mediated apoptosis but not p53-mediated G1 arrest. Mol Cell Biol. 1995 Nov;15(11):6045–6054. doi: 10.1128/mcb.15.11.6045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Lotem J., Sachs L. Cytokine suppression of protease activation in wild-type p53-dependent and p53-independent apoptosis. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9349–9353. doi: 10.1073/pnas.94.17.9349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Lotem J., Sachs L. Hematopoietic cells from mice deficient in wild-type p53 are more resistant to induction of apoptosis by some agents. Blood. 1993 Aug 15;82(4):1092–1096. [PubMed] [Google Scholar]
  48. Macleod K. F., Hu Y., Jacks T. Loss of Rb activates both p53-dependent and independent cell death pathways in the developing mouse nervous system. EMBO J. 1996 Nov 15;15(22):6178–6188. [PMC free article] [PubMed] [Google Scholar]
  49. McConkey D. J., Goodrich D., Bucana C., Klostergaard J. The human retinoblastoma gene product suppresses ceramide-induced apoptosis in human bladder tumor cells. Oncogene. 1996 Oct 17;13(8):1693–1700. [PubMed] [Google Scholar]
  50. Miller D. K. The role of the Caspase family of cysteine proteases in apoptosis. Semin Immunol. 1997 Feb;9(1):35–49. doi: 10.1006/smim.1996.0058. [DOI] [PubMed] [Google Scholar]
  51. Morgenbesser S. D., Williams B. O., Jacks T., DePinho R. A. p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature. 1994 Sep 1;371(6492):72–74. doi: 10.1038/371072a0. [DOI] [PubMed] [Google Scholar]
  52. Morgenstern J. P., Land H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 1990 Jun 25;18(12):3587–3596. doi: 10.1093/nar/18.12.3587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Muller A. J., Young J. C., Pendergast A. M., Pondel M., Landau N. R., Littman D. R., Witte O. N. BCR first exon sequences specifically activate the BCR/ABL tyrosine kinase oncogene of Philadelphia chromosome-positive human leukemias. Mol Cell Biol. 1991 Apr;11(4):1785–1792. doi: 10.1128/mcb.11.4.1785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Ohta T., Kinoshita T., Naito M., Nozaki T., Masutani M., Tsuruo T., Miyajima A. Requirement of the caspase-3/CPP32 protease cascade for apoptotic death following cytokine deprivation in hematopoietic cells. J Biol Chem. 1997 Sep 12;272(37):23111–23116. doi: 10.1074/jbc.272.37.23111. [DOI] [PubMed] [Google Scholar]
  55. Pan H., Griep A. E. Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice: implications for tumor suppressor gene function in development. Genes Dev. 1994 Jun 1;8(11):1285–1299. doi: 10.1101/gad.8.11.1285. [DOI] [PubMed] [Google Scholar]
  56. Pear W. S., Nolan G. P., Scott M. L., Baltimore D. Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8392–8396. doi: 10.1073/pnas.90.18.8392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Poluha W., Poluha D. K., Chang B., Crosbie N. E., Schonhoff C. M., Kilpatrick D. L., Ross A. H. The cyclin-dependent kinase inhibitor p21 (WAF1) is required for survival of differentiating neuroblastoma cells. Mol Cell Biol. 1996 Apr;16(4):1335–1341. doi: 10.1128/mcb.16.4.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Polyak K., Waldman T., He T. C., Kinzler K. W., Vogelstein B. Genetic determinants of p53-induced apoptosis and growth arrest. Genes Dev. 1996 Aug 1;10(15):1945–1952. doi: 10.1101/gad.10.15.1945. [DOI] [PubMed] [Google Scholar]
  59. Polyak K., Xia Y., Zweier J. L., Kinzler K. W., Vogelstein B. A model for p53-induced apoptosis. Nature. 1997 Sep 18;389(6648):300–305. doi: 10.1038/38525. [DOI] [PubMed] [Google Scholar]
  60. Qin X. Q., Livingston D. M., Kaelin W. G., Jr, Adams P. D. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10918–10922. doi: 10.1073/pnas.91.23.10918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Reed J. C. Double identity for proteins of the Bcl-2 family. Nature. 1997 Jun 19;387(6635):773–776. doi: 10.1038/42867. [DOI] [PubMed] [Google Scholar]
  62. Sabbatini P., Han J., Chiou S. K., Nicholson D. W., White E. Interleukin 1 beta converting enzyme-like proteases are essential for p53-mediated transcriptionally dependent apoptosis. Cell Growth Differ. 1997 Jun;8(6):643–653. [PubMed] [Google Scholar]
  63. Sabbatini P., Lin J., Levine A. J., White E. Essential role for p53-mediated transcription in E1A-induced apoptosis. Genes Dev. 1995 Sep 1;9(17):2184–2192. doi: 10.1101/gad.9.17.2184. [DOI] [PubMed] [Google Scholar]
  64. Salvesen G. S., Dixit V. M. Caspases: intracellular signaling by proteolysis. Cell. 1997 Nov 14;91(4):443–446. doi: 10.1016/s0092-8674(00)80430-4. [DOI] [PubMed] [Google Scholar]
  65. Shan B., Lee W. H. Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol Cell Biol. 1994 Dec;14(12):8166–8173. doi: 10.1128/mcb.14.12.8166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Shen Y., Shenk T. Relief of p53-mediated transcriptional repression by the adenovirus E1B 19-kDa protein or the cellular Bcl-2 protein. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8940–8944. doi: 10.1073/pnas.91.19.8940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Slack R. S., Skerjanc I. S., Lach B., Craig J., Jardine K., McBurney M. W. Cells differentiating into neuroectoderm undergo apoptosis in the absence of functional retinoblastoma family proteins. J Cell Biol. 1995 May;129(3):779–788. doi: 10.1083/jcb.129.3.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Tan X., Martin S. J., Green D. R., Wang J. Y. Degradation of retinoblastoma protein in tumor necrosis factor- and CD95-induced cell death. J Biol Chem. 1997 Apr 11;272(15):9613–9616. doi: 10.1074/jbc.272.15.9613. [DOI] [PubMed] [Google Scholar]
  69. Tan X., Wang J. Y. The caspase-RB connection in cell death. Trends Cell Biol. 1998 Mar;8(3):116–120. doi: 10.1016/s0962-8924(97)01208-7. [DOI] [PubMed] [Google Scholar]
  70. Wagner A. J., Kokontis J. M., Hay N. Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cip1. Genes Dev. 1994 Dec 1;8(23):2817–2830. doi: 10.1101/gad.8.23.2817. [DOI] [PubMed] [Google Scholar]
  71. Wang H. G., Rapp U. R., Reed J. C. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell. 1996 Nov 15;87(4):629–638. doi: 10.1016/s0092-8674(00)81383-5. [DOI] [PubMed] [Google Scholar]
  72. Wang J. Y. Retinoblastoma protein in growth suppression and death protection. Curr Opin Genet Dev. 1997 Feb;7(1):39–45. doi: 10.1016/s0959-437x(97)80107-4. [DOI] [PubMed] [Google Scholar]
  73. Wang J., Guo K., Wills K. N., Walsh K. Rb functions to inhibit apoptosis during myocyte differentiation. Cancer Res. 1997 Feb 1;57(3):351–354. [PubMed] [Google Scholar]
  74. Wang J., Walsh K. Resistance to apoptosis conferred by Cdk inhibitors during myocyte differentiation. Science. 1996 Jul 19;273(5273):359–361. doi: 10.1126/science.273.5273.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Whitaker L. L., Hansen M. F. Induction of apoptosis in Mv1Lu cells by expression of competitive RB1 mutants. Oncogene. 1997 Aug 28;15(9):1069–1077. doi: 10.1038/sj.onc.1201277. [DOI] [PubMed] [Google Scholar]
  76. White E. Tumour biology. p53, guardian of Rb. Nature. 1994 Sep 1;371(6492):21–22. doi: 10.1038/371021a0. [DOI] [PubMed] [Google Scholar]
  77. Wu X., Levine A. J. p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3602–3606. doi: 10.1073/pnas.91.9.3602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Wyllie A. Apoptosis. Clues in the p53 murder mystery. Nature. 1997 Sep 18;389(6648):237–238. doi: 10.1038/38405. [DOI] [PubMed] [Google Scholar]
  79. Xiao Z. X., Chen J., Levine A. J., Modjtahedi N., Xing J., Sellers W. R., Livingston D. M. Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature. 1995 Jun 22;375(6533):694–698. doi: 10.1038/375694a0. [DOI] [PubMed] [Google Scholar]
  80. Yamasaki L., Jacks T., Bronson R., Goillot E., Harlow E., Dyson N. J. Tumor induction and tissue atrophy in mice lacking E2F-1. Cell. 1996 May 17;85(4):537–548. doi: 10.1016/s0092-8674(00)81254-4. [DOI] [PubMed] [Google Scholar]
  81. Yonish-Rouach E., Deguin V., Zaitchouk T., Breugnot C., Mishal Z., Jenkins J. R., May E. Transcriptional activation plays a role in the induction of apoptosis by transiently transfected wild-type p53. Oncogene. 1995 Dec 7;11(11):2197–2205. [PubMed] [Google Scholar]
  82. Zacksenhaus E., Jiang Z., Chung D., Marth J. D., Phillips R. A., Gallie B. L. pRb controls proliferation, differentiation, and death of skeletal muscle cells and other lineages during embryogenesis. Genes Dev. 1996 Dec 1;10(23):3051–3064. doi: 10.1101/gad.10.23.3051. [DOI] [PubMed] [Google Scholar]
  83. Zha J., Harada H., Yang E., Jockel J., Korsmeyer S. J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L) Cell. 1996 Nov 15;87(4):619–628. doi: 10.1016/s0092-8674(00)81382-3. [DOI] [PubMed] [Google Scholar]
  84. Zhu Y. M., Bradbury D. A., Russell N. H. Wild-type p53 is required for apoptosis induced by growth factor deprivation in factor-dependent leukaemic cells. Br J Cancer. 1994 Mar;69(3):468–472. doi: 10.1038/bjc.1994.85. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES