Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Jul 1;17(13):3775–3785. doi: 10.1093/emboj/17.13.3775

The same two monomers within a MuA tetramer provide the DDE domains for the strand cleavage and strand transfer steps of transposition.

S Y Namgoong 1, R M Harshey 1
PMCID: PMC1170713  PMID: 9649447

Abstract

The chemistry of Mu transposition is executed within a tetrameric form of the Mu transposase (MuA protein). A triad of DDE (Asp, Asp35Glu motif) residues in the central domain of MuA (DDE domain) is essential for both the strand cleavage and strand transfer steps of transposition. Previous studies had suggested that complete Mu transposition requires all four subunits in the MuA tetramer to carry an active DDE domain. Using a mixture of MuA proteins with either wild-type or altered att-DNA binding specificities, we have now designed specific arrangements of MuA subunits carrying the DDE domain. From analysis of the abilities of oriented tetramers to carry out DNA cleavage and strand transfer from supercoiled DNA, a new picture of the disposition of DNA and protein partners during transposition has emerged. For DNA cleavage, two subunits of MuA located at attL1 and attR1 (sites that undergo cleavage) provide DDE residues in trans. The same two subunits contribute DDE residues for strand transfer, also in trans. Thus, only two active DDE+ monomers within the tetramer carry out complete Mu transposition. We also show that when the attR1-R2 arrangement used on supercoiled substrates is tested for cleavage on linear substrates, alternative chemically competent DNA-protein associations are produced, wherein the functional DDE subunits are positioned at R2 rather than at R1.

Full Text

The Full Text of this article is available as a PDF (404.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldaz H., Schuster E., Baker T. A. The interwoven architecture of the Mu transposase couples DNA synapsis to catalysis. Cell. 1996 Apr 19;85(2):257–269. doi: 10.1016/s0092-8674(00)81102-2. [DOI] [PubMed] [Google Scholar]
  2. Baker T. A., Kremenstova E., Luo L. Complete transposition requires four active monomers in the mu transposase tetramer. Genes Dev. 1994 Oct 15;8(20):2416–2428. doi: 10.1101/gad.8.20.2416. [DOI] [PubMed] [Google Scholar]
  3. Baker T. A., Luo L. Identification of residues in the Mu transposase essential for catalysis. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6654–6658. doi: 10.1073/pnas.91.14.6654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bolland S., Kleckner N. The three chemical steps of Tn10/IS10 transposition involve repeated utilization of a single active site. Cell. 1996 Jan 26;84(2):223–233. doi: 10.1016/s0092-8674(00)80977-0. [DOI] [PubMed] [Google Scholar]
  5. Bujacz G., Alexandratos J., Wlodawer A., Merkel G., Andrake M., Katz R. A., Skalka A. M. Binding of different divalent cations to the active site of avian sarcoma virus integrase and their effects on enzymatic activity. J Biol Chem. 1997 Jul 18;272(29):18161–18168. doi: 10.1074/jbc.272.29.18161. [DOI] [PubMed] [Google Scholar]
  6. Bujacz G., Jaskólski M., Alexandratos J., Wlodawer A., Merkel G., Katz R. A., Skalka A. M. The catalytic domain of avian sarcoma virus integrase: conformation of the active-site residues in the presence of divalent cations. Structure. 1996 Jan 15;4(1):89–96. doi: 10.1016/s0969-2126(96)00012-3. [DOI] [PubMed] [Google Scholar]
  7. Chaconas G., Lavoie B. D., Watson M. A. DNA transposition: jumping gene machine, some assembly required. Curr Biol. 1996 Jul 1;6(7):817–820. doi: 10.1016/s0960-9822(02)00603-6. [DOI] [PubMed] [Google Scholar]
  8. Chen J. W., Lee J., Jayaram M. DNA cleavage in trans by the active site tyrosine during Flp recombination: switching protein partners before exchanging strands. Cell. 1992 May 15;69(4):647–658. doi: 10.1016/0092-8674(92)90228-5. [DOI] [PubMed] [Google Scholar]
  9. Clubb R. T., Omichinski J. G., Savilahti H., Mizuuchi K., Gronenborn A. M., Clore G. M. A novel class of winged helix-turn-helix protein: the DNA-binding domain of Mu transposase. Structure. 1994 Nov 15;2(11):1041–1048. doi: 10.1016/s0969-2126(94)00107-3. [DOI] [PubMed] [Google Scholar]
  10. Clubb R. T., Schumacher S., Mizuuchi K., Gronenborn A. M., Clore G. M. Solution structure of the I gamma subdomain of the Mu end DNA-binding domain of phage Mu transposase. J Mol Biol. 1997 Oct 17;273(1):19–25. doi: 10.1006/jmbi.1997.1312. [DOI] [PubMed] [Google Scholar]
  11. Craig N. L. The mechanism of conservative site-specific recombination. Annu Rev Genet. 1988;22:77–105. doi: 10.1146/annurev.ge.22.120188.000453. [DOI] [PubMed] [Google Scholar]
  12. Craigie R., Mizuuchi K. Transposition of Mu DNA: joining of Mu to target DNA can be uncoupled from cleavage at the ends of Mu. Cell. 1987 Nov 6;51(3):493–501. doi: 10.1016/0092-8674(87)90645-3. [DOI] [PubMed] [Google Scholar]
  13. Guo F., Gopaul D. N., van Duyne G. D. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature. 1997 Sep 4;389(6646):40–46. doi: 10.1038/37925. [DOI] [PubMed] [Google Scholar]
  14. Han Y. W., Gumport R. I., Gardner J. F. Complementation of bacteriophage lambda integrase mutants: evidence for an intersubunit active site. EMBO J. 1993 Dec;12(12):4577–4584. doi: 10.1002/j.1460-2075.1993.tb06146.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kim K., Harshey R. M. Mutational analysis of the att DNA-binding domain of phage Mu transposase. Nucleic Acids Res. 1995 Oct 11;23(19):3937–3943. doi: 10.1093/nar/23.19.3937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kim K., Namgoong S. Y., Jayaram M., Harshey R. M. Step-arrest mutants of phage Mu transposase. Implications in DNA-protein assembly, Mu end cleavage, and strand transfer. J Biol Chem. 1995 Jan 20;270(3):1472–1479. doi: 10.1074/jbc.270.3.1472. [DOI] [PubMed] [Google Scholar]
  17. Kuo C. F., Zou A. H., Jayaram M., Getzoff E., Harshey R. DNA-protein complexes during attachment-site synapsis in Mu DNA transposition. EMBO J. 1991 Jun;10(6):1585–1591. doi: 10.1002/j.1460-2075.1991.tb07679.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Landy A. Mechanistic and structural complexity in the site-specific recombination pathways of Int and FLP. Curr Opin Genet Dev. 1993 Oct;3(5):699–707. doi: 10.1016/s0959-437x(05)80086-3. [DOI] [PubMed] [Google Scholar]
  19. Lavoie B. D., Chaconas G. Transposition of phage Mu DNA. Curr Top Microbiol Immunol. 1996;204:83–102. doi: 10.1007/978-3-642-79795-8_4. [DOI] [PubMed] [Google Scholar]
  20. Lavoie B. D., Chan B. S., Allison R. G., Chaconas G. Structural aspects of a higher order nucleoprotein complex: induction of an altered DNA structure at the Mu-host junction of the Mu type 1 transpososome. EMBO J. 1991 Oct;10(10):3051–3059. doi: 10.1002/j.1460-2075.1991.tb07856.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lee J., Jayaram M. A tetramer of the Flp recombinase silences the trimers within it during resolution of a Holliday junction substrate. Genes Dev. 1997 Sep 15;11(18):2438–2447. doi: 10.1101/gad.11.18.2438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lee J., Whang I., Jayaram M. Assembly and orientation of Flp recombinase active sites on two-, three- and four-armed DNA substrates: implications for a recombination mechanism. J Mol Biol. 1996 Apr 5;257(3):532–549. doi: 10.1006/jmbi.1996.0183. [DOI] [PubMed] [Google Scholar]
  23. Leung P. C., Teplow D. B., Harshey R. M. Interaction of distinct domains in Mu transposase with Mu DNA ends and an internal transpositional enhancer. Nature. 1989 Apr 20;338(6217):656–658. doi: 10.1038/338656a0. [DOI] [PubMed] [Google Scholar]
  24. Mizuuchi K. Transpositional recombination: mechanistic insights from studies of mu and other elements. Annu Rev Biochem. 1992;61:1011–1051. doi: 10.1146/annurev.bi.61.070192.005051. [DOI] [PubMed] [Google Scholar]
  25. Mizuuchi M., Baker T. A., Mizuuchi K. DNase protection analysis of the stable synaptic complexes involved in Mu transposition. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9031–9035. doi: 10.1073/pnas.88.20.9031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mizuuchi M., Mizuuchi K. Efficient Mu transposition requires interaction of transposase with a DNA sequence at the Mu operator: implications for regulation. Cell. 1989 Jul 28;58(2):399–408. doi: 10.1016/0092-8674(89)90854-4. [DOI] [PubMed] [Google Scholar]
  27. Naigamwalla D. Z., Chaconas G. A new set of Mu DNA transposition intermediates: alternate pathways of target capture preceding strand transfer. EMBO J. 1997 Sep 1;16(17):5227–5234. doi: 10.1093/emboj/16.17.5227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nakayama C., Teplow D. B., Harshey R. M. Structural domains in phage Mu transposase: identification of the site-specific DNA-binding domain. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1809–1813. doi: 10.1073/pnas.84.7.1809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Namgoong S. Y., Jayaram M., Kim K., Harshey R. M. DNA-protein cooperativity in the assembly and stabilization of mu strand transfer complex. Relevance of DNA phasing and att site cleavage. J Mol Biol. 1994 May 13;238(4):514–527. doi: 10.1006/jmbi.1994.1311. [DOI] [PubMed] [Google Scholar]
  30. Namgoong S. Y., Kim K., Saxena P., Yang J. Y., Jayaram M., Giedroc D. P., Harshey R. M. Mutational analysis of domain II beta of bacteriophage Mu transposase: domains II alpha and II beta belong to different catalytic complementation groups. J Mol Biol. 1998 Jan 16;275(2):221–232. doi: 10.1006/jmbi.1997.1466. [DOI] [PubMed] [Google Scholar]
  31. Nunes-Düby S. E., Tirumalai R. S., Dorgai L., Yagil E., Weisberg R. A., Landy A. Lambda integrase cleaves DNA in cis. EMBO J. 1994 Sep 15;13(18):4421–4430. doi: 10.1002/j.1460-2075.1994.tb06762.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Qian X. H., Cox M. M. Asymmetry in active complexes of FLP recombinase. Genes Dev. 1995 Aug 15;9(16):2053–2064. doi: 10.1101/gad.9.16.2053. [DOI] [PubMed] [Google Scholar]
  33. Rice P., Mizuuchi K. Structure of the bacteriophage Mu transposase core: a common structural motif for DNA transposition and retroviral integration. Cell. 1995 Jul 28;82(2):209–220. doi: 10.1016/0092-8674(95)90308-9. [DOI] [PubMed] [Google Scholar]
  34. Sadowski P. D. Site-specific genetic recombination: hops, flips, and flops. FASEB J. 1993 Jun;7(9):760–767. doi: 10.1096/fasebj.7.9.8392474. [DOI] [PubMed] [Google Scholar]
  35. Savilahti H., Mizuuchi K. Mu transpositional recombination: donor DNA cleavage and strand transfer in trans by the Mu transposase. Cell. 1996 Apr 19;85(2):271–280. doi: 10.1016/s0092-8674(00)81103-4. [DOI] [PubMed] [Google Scholar]
  36. Schumacher S., Clubb R. T., Cai M., Mizuuchi K., Clore G. M., Gronenborn A. M. Solution structure of the Mu end DNA-binding ibeta subdomain of phage Mu transposase: modular DNA recognition by two tethered domains. EMBO J. 1997 Dec 15;16(24):7532–7541. doi: 10.1093/emboj/16.24.7532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Serre M. C., Evans B. R., Araki H., Oshima Y., Jayaram M. Half-site recombinations mediated by yeast site-specific recombinases Flp and R. J Mol Biol. 1992 Jun 5;225(3):621–642. doi: 10.1016/0022-2836(92)90390-6. [DOI] [PubMed] [Google Scholar]
  38. Shaikh A. C., Sadowski P. D. The Cre recombinase cleaves the lox site in trans. J Biol Chem. 1997 Feb 28;272(9):5695–5702. doi: 10.1074/jbc.272.9.5695. [DOI] [PubMed] [Google Scholar]
  39. Surette M. G., Buch S. J., Chaconas G. Transpososomes: stable protein-DNA complexes involved in the in vitro transposition of bacteriophage Mu DNA. Cell. 1987 Apr 24;49(2):253–262. doi: 10.1016/0092-8674(87)90566-6. [DOI] [PubMed] [Google Scholar]
  40. Surette M. G., Harkness T., Chaconas G. Stimulation of the Mu A protein-mediated strand cleavage reaction by the Mu B protein, and the requirement of DNA nicking for stable type 1 transpososome formation. In vitro transposition characteristics of mini-Mu plasmids carrying terminal base pair mutations. J Biol Chem. 1991 Feb 15;266(5):3118–3124. [PubMed] [Google Scholar]
  41. Wang Z., Namgoong S. Y., Zhang X., Harshey R. M. Kinetic and structural probing of the precleavage synaptic complex (type 0) formed during phage Mu transposition. Action of metal ions and reagents specific to single-stranded DNA. J Biol Chem. 1996 Apr 19;271(16):9619–9626. doi: 10.1074/jbc.271.16.9619. [DOI] [PubMed] [Google Scholar]
  42. Watson M. A., Chaconas G. Three-site synapsis during Mu DNA transposition: a critical intermediate preceding engagement of the active site. Cell. 1996 May 3;85(3):435–445. doi: 10.1016/s0092-8674(00)81121-6. [DOI] [PubMed] [Google Scholar]
  43. Wu Z., Chaconas G. A novel DNA binding and nuclease activity in domain III of Mu transposase: evidence for a catalytic region involved in donor cleavage. EMBO J. 1995 Aug 1;14(15):3835–3843. doi: 10.1002/j.1460-2075.1995.tb00053.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yang J. Y., Jayaram M., Harshey R. M. Positional information within the Mu transposase tetramer: catalytic contributions of individual monomers. Cell. 1996 May 3;85(3):447–455. doi: 10.1016/s0092-8674(00)81122-8. [DOI] [PubMed] [Google Scholar]
  45. Yang J. Y., Kim K., Jayaram M., Harshey R. M. A domain sharing model for active site assembly within the Mu A tetramer during transposition: the enhancer may specify domain contributions. EMBO J. 1995 May 15;14(10):2374–2384. doi: 10.1002/j.1460-2075.1995.tb07232.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zou A. H., Leung P. C., Harshey R. M. Transposase contacts with mu DNA ends. J Biol Chem. 1991 Oct 25;266(30):20476–20482. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES