Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Jul 15;17(14):3858–3866. doi: 10.1093/emboj/17.14.3858

PED/PEA-15 gene controls glucose transport and is overexpressed in type 2 diabetes mellitus.

G Condorelli 1, G Vigliotta 1, C Iavarone 1, M Caruso 1, C G Tocchetti 1, F Andreozzi 1, A Cafieri 1, M F Tecce 1, P Formisano 1, L Beguinot 1, F Beguinot 1
PMCID: PMC1170721  PMID: 9670003

Abstract

We have used differential display to identify genes whose expression is altered in type 2 diabetes thus contributing to its pathogenesis. One mRNA is overexpressed in fibroblasts from type 2 diabetics compared with non-diabetic individuals, as well as in skeletal muscle and adipose tissues, two major sites of insulin resistance in type 2 diabetes. The levels of the protein encoded by this mRNA are also elevated in type 2 diabetic tissues; thus, we named it PED for phosphoprotein enriched in diabetes. PED cloning shows that it encodes a 15 kDa phosphoprotein identical to the protein kinase C (PKC) substrate PEA-15. The PED gene maps on human chromosome 1q21-22. Transfection of PED/PEA-15 in differentiating L6 skeletal muscle cells increases the content of Glut1 transporters on the plasma membrane and inhibits insulin-stimulated glucose transport and cell-surface recruitment of Glut4, the major insulin-sensitive glucose transporter. These effects of PED overexpression are reversed by blocking PKC activity. Overexpression of the PED/PEA-15 gene may contribute to insulin resistance in glucose uptake in type 2 diabetes.

Full Text

The Full Text of this article is available as a PDF (402.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araujo H., Danziger N., Cordier J., Glowinski J., Chneiweiss H. Characterization of PEA-15, a major substrate for protein kinase C in astrocytes. J Biol Chem. 1993 Mar 15;268(8):5911–5920. [PubMed] [Google Scholar]
  2. Bell G. I., Burant C. F., Takeda J., Gould G. W. Structure and function of mammalian facilitative sugar transporters. J Biol Chem. 1993 Sep 15;268(26):19161–19164. [PubMed] [Google Scholar]
  3. Bera T. K., Guzman R. C., Miyamoto S., Panda D. K., Sasaki M., Hanyu K., Enami J., Nandi S. Identification of a mammary transforming gene (MAT1) associated with mouse mammary carcinogenesis. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9789–9793. doi: 10.1073/pnas.91.21.9789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boguski M. S., Lowe T. M., Tolstoshev C. M. dbEST--database for "expressed sequence tags". Nat Genet. 1993 Aug;4(4):332–333. doi: 10.1038/ng0893-332. [DOI] [PubMed] [Google Scholar]
  5. Burant C. F., Sivitz W. I., Fukumoto H., Kayano T., Nagamatsu S., Seino S., Pessin J. E., Bell G. I. Mammalian glucose transporters: structure and molecular regulation. Recent Prog Horm Res. 1991;47:349–388. doi: 10.1016/b978-0-12-571147-0.50015-9. [DOI] [PubMed] [Google Scholar]
  6. Caruso M., Miele C., Formisano P., Condorelli G., Bifulco G., Oliva A., Auricchio R., Riccardi G., Capaldo B., Beguinot F. In skeletal muscle, glucose storage and oxidation are differentially impaired by the IR1152 mutant receptor. J Biol Chem. 1997 Mar 14;272(11):7290–7297. doi: 10.1074/jbc.272.11.7290. [DOI] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Clancy B. M., Harrison S. A., Buxton J. M., Czech M. P. Protein synthesis inhibitors activate glucose transport without increasing plasma membrane glucose transporters in 3T3-L1 adipocytes. J Biol Chem. 1991 Jun 5;266(16):10122–10130. [PubMed] [Google Scholar]
  9. Czech M. P., Clancy B. M., Pessino A., Woon C. W., Harrison S. A. Complex regulation of simple sugar transport in insulin-responsive cells. Trends Biochem Sci. 1992 May;17(5):197–201. doi: 10.1016/0968-0004(92)90266-c. [DOI] [PubMed] [Google Scholar]
  10. Danziger N., Yokoyama M., Jay T., Cordier J., Glowinski J., Chneiweiss H. Cellular expression, developmental regulation, and phylogenic conservation of PEA-15, the astrocytic major phosphoprotein and protein kinase C substrate. J Neurochem. 1995 Mar;64(3):1016–1025. doi: 10.1046/j.1471-4159.1995.64031016.x. [DOI] [PubMed] [Google Scholar]
  11. De Meyts P. The diabetogenes concept of NIDDM. Adv Exp Med Biol. 1993;334:89–100. doi: 10.1007/978-1-4615-2910-1_7. [DOI] [PubMed] [Google Scholar]
  12. Estellés A., Yokoyama M., Nothias F., Vincent J. D., Glowinski J., Vernier P., Chneiweiss H. The major astrocytic phosphoprotein PEA-15 is encoded by two mRNAs conserved on their full length in mouse and human. J Biol Chem. 1996 Jun 21;271(25):14800–14806. doi: 10.1074/jbc.271.25.14800. [DOI] [PubMed] [Google Scholar]
  13. Formisano P., Sohn K. J., Miele C., Di Finizio B., Petruzziello A., Riccardi G., Beguinot L., Beguinot F. Mutation in a conserved motif next to the insulin receptor key autophosphorylation sites de-regulates kinase activity and impairs insulin action. J Biol Chem. 1993 Mar 5;268(7):5241–5248. [PubMed] [Google Scholar]
  14. Garvey W. T., Maianu L., Kennedy A., Wallace P., Ganaway E., Hamacher L. L., Yarnall D. P., Lenhard J. M., Burns D. K. Muscle Rad expression and human metabolism: potential role of the novel Ras-related GTPase in energy expenditure and body composition. Diabetes. 1997 Mar;46(3):444–450. doi: 10.2337/diab.46.3.444. [DOI] [PubMed] [Google Scholar]
  15. Gerbitz K. D. Does the mitochondrial DNA play a role in the pathogenesis of diabetes? Diabetologia. 1992 Dec;35(12):1181–1186. doi: 10.1007/BF00401375. [DOI] [PubMed] [Google Scholar]
  16. Hanis C. L., Boerwinkle E., Chakraborty R., Ellsworth D. L., Concannon P., Stirling B., Morrison V. A., Wapelhorst B., Spielman R. S., Gogolin-Ewens K. J. A genome-wide search for human non-insulin-dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2. Nat Genet. 1996 Jun;13(2):161–166. doi: 10.1038/ng0696-161. [DOI] [PubMed] [Google Scholar]
  17. Holman G. D., Kasuga M. From receptor to transporter: insulin signalling to glucose transport. Diabetologia. 1997 Sep;40(9):991–1003. doi: 10.1007/s001250050780. [DOI] [PubMed] [Google Scholar]
  18. Jackson F. R., Banfi S., Guffanti A., Rossi E. A novel zinc finger-containing RNA-binding protein conserved from fruitflies to humans. Genomics. 1997 May 1;41(3):444–452. doi: 10.1006/geno.1997.4704. [DOI] [PubMed] [Google Scholar]
  19. Kahn C. R. Banting Lecture. Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes. 1994 Aug;43(8):1066–1084. doi: 10.2337/diab.43.8.1066. [DOI] [PubMed] [Google Scholar]
  20. Kan O., Baldwin S. A., Whetton A. D. Apoptosis is regulated by the rate of glucose transport in an interleukin 3 dependent cell line. J Exp Med. 1994 Sep 1;180(3):917–923. doi: 10.1084/jem.180.3.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kishimoto M., Sakura H., Hayashi K., Akanuma Y., Yazaki Y., Kasuga M., Kadowaki T. Detection of mutations in the human insulin gene by single strand conformation polymorphisms. J Clin Endocrinol Metab. 1992 May;74(5):1027–1031. doi: 10.1210/jcem.74.5.1569150. [DOI] [PubMed] [Google Scholar]
  22. Liang P., Pardee A. B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 1992 Aug 14;257(5072):967–971. doi: 10.1126/science.1354393. [DOI] [PubMed] [Google Scholar]
  23. Lienhard G. E., Slot J. W., James D. E., Mueckler M. M. How cells absorb glucose. Sci Am. 1992 Jan;266(1):86–91. doi: 10.1038/scientificamerican0192-86. [DOI] [PubMed] [Google Scholar]
  24. Maddux B. A., Sbraccia P., Kumakura S., Sasson S., Youngren J., Fisher A., Spencer S., Grupe A., Henzel W., Stewart T. A. Membrane glycoprotein PC-1 and insulin resistance in non-insulin-dependent diabetes mellitus. Nature. 1995 Feb 2;373(6513):448–451. doi: 10.1038/373448a0. [DOI] [PubMed] [Google Scholar]
  25. Mahtani M. M., Widén E., Lehto M., Thomas J., McCarthy M., Brayer J., Bryant B., Chan G., Daly M., Forsblom C. Mapping of a gene for type 2 diabetes associated with an insulin secretion defect by a genome scan in Finnish families. Nat Genet. 1996 Sep;14(1):90–94. doi: 10.1038/ng0996-90. [DOI] [PubMed] [Google Scholar]
  26. Marshall B. A., Ren J. M., Johnson D. W., Gibbs E. M., Lillquist J. S., Soeller W. C., Holloszy J. O., Mueckler M. Germline manipulation of glucose homeostasis via alteration of glucose transporter levels in skeletal muscle. J Biol Chem. 1993 Sep 5;268(25):18442–18445. [PubMed] [Google Scholar]
  27. Miele C., Formisano P., Condorelli G., Caruso M., Oriente F., Andreozzi F., Tocchetti C. G., Riccardi G., Beguinot F. Abnormal glucose transport and GLUT1 cell-surface content in fibroblasts and skeletal muscle from NIDDM and obese subjects. Diabetologia. 1997 Apr;40(4):421–429. doi: 10.1007/s001250050696. [DOI] [PubMed] [Google Scholar]
  28. Moyers J. S., Bilan P. J., Reynet C., Kahn C. R. Overexpression of Rad inhibits glucose uptake in cultured muscle and fat cells. J Biol Chem. 1996 Sep 20;271(38):23111–23116. doi: 10.1074/jbc.271.38.23111. [DOI] [PubMed] [Google Scholar]
  29. Reardon W., Ross R. J., Sweeney M. G., Luxon L. M., Pembrey M. E., Harding A. E., Trembath R. C. Diabetes mellitus associated with a pathogenic point mutation in mitochondrial DNA. Lancet. 1992 Dec 5;340(8832):1376–1379. doi: 10.1016/0140-6736(92)92560-3. [DOI] [PubMed] [Google Scholar]
  30. Reynet C., Kahn C. R. Rad: a member of the Ras family overexpressed in muscle of type II diabetic humans. Science. 1993 Nov 26;262(5138):1441–1444. doi: 10.1126/science.8248782. [DOI] [PubMed] [Google Scholar]
  31. Steiner D. F., Tager H. S., Chan S. J., Nanjo K., Sanke T., Rubenstein A. H. Lessons learned from molecular biology of insulin-gene mutations. Diabetes Care. 1990 Jun;13(6):600–609. doi: 10.2337/diacare.13.6.600. [DOI] [PubMed] [Google Scholar]
  32. Thorens B. Facilitated glucose transporters in epithelial cells. Annu Rev Physiol. 1993;55:591–608. doi: 10.1146/annurev.ph.55.030193.003111. [DOI] [PubMed] [Google Scholar]
  33. Tsakiridis T., McDowell H. E., Walker T., Downes C. P., Hundal H. S., Vranic M., Klip A. Multiple roles of phosphatidylinositol 3-kinase in regulation of glucose transport, amino acid transport, and glucose transporters in L6 skeletal muscle cells. Endocrinology. 1995 Oct;136(10):4315–4322. doi: 10.1210/endo.136.10.7664650. [DOI] [PubMed] [Google Scholar]
  34. Zhu J., Bilan P. J., Moyers J. S., Antonetti D. A., Kahn C. R. Rad, a novel Ras-related GTPase, interacts with skeletal muscle beta-tropomyosin. J Biol Chem. 1996 Jan 12;271(2):768–773. doi: 10.1074/jbc.271.2.768. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES