Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Jul 15;17(14):3931–3939. doi: 10.1093/emboj/17.14.3931

Brain spectrin binding to the NMDA receptor is regulated by phosphorylation, calcium and calmodulin.

A Wechsler 1, V I Teichberg 1
PMCID: PMC1170728  PMID: 9670010

Abstract

The N-methyl-D-aspartate receptor (NMDA-R) and brain spectrin, a protein that links membrane proteins to the actin cytoskeleton, are major components of post-synaptic densities (PSDs). Since the activity of the NMDA-R channel is dependent on the integrity of actin and leads to calpain-mediated spectrin breakdown, we have investigated whether the actin-binding spectrin may interact directly with NMDA-Rs. Spectrin is reported here to interact selectively in vitro with the C-terminal cytoplasmic domains of the NR1a, NR2A and NR2B subunits of the NMDA-R but not with that of the AMPA receptor GluR1. Spectrin binds at NR2B sites distinct from those of alpha-actinin-2 and members of the PSD95/SAP90 family. The spectrin-NR2B interactions are antagonized by Ca2+ and fyn-mediated NR2B phosphorylation, but not by Ca2+/calmodulin (CaM) or by Ca2+/CaM-dependent protein kinase II-mediated NR2B phosphorylation. The spectrin-NR1 interactions are unaffected by Ca2+ but inhibited by CaM and by protein kinase A- and C-mediated phosphorylations of NR1. Finally, in rat synaptosomes, both spectrin and NR2B are loosened from membranes upon addition of physiological concentrations of calcium ions. The highly regulated linkage of the NMDA-R to spectrin may underlie the morphological changes that occur in neuronal dendrites concurrently with synaptic activity and plasticity.

Full Text

The Full Text of this article is available as a PDF (316.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benke T. A., Jones O. T., Collingridge G. L., Angelides K. J. N-Methyl-D-aspartate receptors are clustered and immobilized on dendrites of living cortical neurons. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7819–7823. doi: 10.1073/pnas.90.16.7819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bennett V., Gilligan D. M. The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane. Annu Rev Cell Biol. 1993;9:27–66. doi: 10.1146/annurev.cb.09.110193.000331. [DOI] [PubMed] [Google Scholar]
  3. Cain D. P. LTP, NMDA, genes and learning. Curr Opin Neurobiol. 1997 Apr;7(2):235–242. doi: 10.1016/s0959-4388(97)80012-8. [DOI] [PubMed] [Google Scholar]
  4. Carlin R. K., Bartelt D. C., Siekevitz P. Identification of fodrin as a major calmodulin-binding protein in postsynaptic density preparations. J Cell Biol. 1983 Feb;96(2):443–448. doi: 10.1083/jcb.96.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carlin R. K., Grab D. J., Cohen R. S., Siekevitz P. Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities. J Cell Biol. 1980 Sep;86(3):831–845. doi: 10.1083/jcb.86.3.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carr D. W., Stofko-Hahn R. E., Fraser I. D., Cone R. D., Scott J. D. Localization of the cAMP-dependent protein kinase to the postsynaptic densities by A-kinase anchoring proteins. Characterization of AKAP 79. J Biol Chem. 1992 Aug 25;267(24):16816–16823. [PubMed] [Google Scholar]
  7. Chen L., Huang L. Y. Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation. Nature. 1992 Apr 9;356(6369):521–523. doi: 10.1038/356521a0. [DOI] [PubMed] [Google Scholar]
  8. Collingridge G. L., Bliss T. V. Memories of NMDA receptors and LTP. Trends Neurosci. 1995 Feb;18(2):54–56. [PubMed] [Google Scholar]
  9. Davis J., Bennett V. Brain spectrin. Isolation of subunits and formation of hybrids with erythrocyte spectrin subunits. J Biol Chem. 1983 Jun 25;258(12):7757–7766. [PubMed] [Google Scholar]
  10. Davis L. H., Bennett V. Identification of two regions of beta G spectrin that bind to distinct sites in brain membranes. J Biol Chem. 1994 Feb 11;269(6):4409–4416. [PubMed] [Google Scholar]
  11. Di Stasi A. M., Gallo V., Ceccarini M., Petrucci T. C. Neuronal fodrin proteolysis occurs independently of excitatory amino acid-induced neurotoxicity. Neuron. 1991 Mar;6(3):445–454. doi: 10.1016/0896-6273(91)90252-u. [DOI] [PubMed] [Google Scholar]
  12. Eder P. S., Soong C. J., Tao M. Phosphorylation reduces the affinity of protein 4.1 for spectrin. Biochemistry. 1986 Apr 8;25(7):1764–1770. doi: 10.1021/bi00355a047. [DOI] [PubMed] [Google Scholar]
  13. Ehlers M. D., Fung E. T., O'Brien R. J., Huganir R. L. Splice variant-specific interaction of the NMDA receptor subunit NR1 with neuronal intermediate filaments. J Neurosci. 1998 Jan 15;18(2):720–730. doi: 10.1523/JNEUROSCI.18-02-00720.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ehlers M. D., Zhang S., Bernhadt J. P., Huganir R. L. Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell. 1996 Mar 8;84(5):745–755. doi: 10.1016/s0092-8674(00)81052-1. [DOI] [PubMed] [Google Scholar]
  15. Faddis B. T., Hasbani M. J., Goldberg M. P. Calpain activation contributes to dendritic remodeling after brief excitotoxic injury in vitro. J Neurosci. 1997 Feb 1;17(3):951–959. doi: 10.1523/JNEUROSCI.17-03-00951.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fifková E., Morales M. Actin matrix of dendritic spines, synaptic plasticity, and long-term potentiation. Int Rev Cytol. 1992;139:267–307. doi: 10.1016/s0074-7696(08)61414-x. [DOI] [PubMed] [Google Scholar]
  17. Frappier T., Stetzkowski-Marden F., Pradel L. A. Interaction domains of neurofilament light chain and brain spectrin. Biochem J. 1991 Apr 15;275(Pt 2):521–527. doi: 10.1042/bj2750521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Grant S. G., O'Dell T. J., Karl K. A., Stein P. L., Soriano P., Kandel E. R. Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science. 1992 Dec 18;258(5090):1903–1910. doi: 10.1126/science.1361685. [DOI] [PubMed] [Google Scholar]
  19. Herrera S., Rudin W., Herrera M., Clavijo P., Mancilla L., de Plata C., Matile H., Certa U. A conserved region of the MSP-1 surface protein of Plasmodium falciparum contains a recognition sequence for erythrocyte spectrin. EMBO J. 1993 Apr;12(4):1607–1614. doi: 10.1002/j.1460-2075.1993.tb05805.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hitt A. L., Luna E. J. Membrane interactions with the actin cytoskeleton. Curr Opin Cell Biol. 1994 Feb;6(1):120–130. doi: 10.1016/0955-0674(94)90125-2. [DOI] [PubMed] [Google Scholar]
  21. Iga M., Inui M., Sobue K. Characterization of the interaction between synapsin I and calspectin (brain spectrin or fodrin). Biochem Biophys Res Commun. 1997 Feb 24;231(3):852–855. doi: 10.1006/bbrc.1997.6202. [DOI] [PubMed] [Google Scholar]
  22. Iida N., Lokeshwar V. B., Bourguignon L. Y. Mapping the fodrin binding domain in CD45, a leukocyte membrane-associated tyrosine phosphatase. J Biol Chem. 1994 Nov 18;269(46):28576–28583. [PubMed] [Google Scholar]
  23. Kennedy M. B. The postsynaptic density at glutamatergic synapses. Trends Neurosci. 1997 Jun;20(6):264–268. doi: 10.1016/s0166-2236(96)01033-8. [DOI] [PubMed] [Google Scholar]
  24. Kim E., Cho K. O., Rothschild A., Sheng M. Heteromultimerization and NMDA receptor-clustering activity of Chapsyn-110, a member of the PSD-95 family of proteins. Neuron. 1996 Jul;17(1):103–113. doi: 10.1016/s0896-6273(00)80284-6. [DOI] [PubMed] [Google Scholar]
  25. Kornau H. C., Schenker L. T., Kennedy M. B., Seeburg P. H. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science. 1995 Sep 22;269(5231):1737–1740. doi: 10.1126/science.7569905. [DOI] [PubMed] [Google Scholar]
  26. Köhr G., Seeburg P. H. Subtype-specific regulation of recombinant NMDA receptor-channels by protein tyrosine kinases of the src family. J Physiol. 1996 Apr 15;492(Pt 2):445–452. doi: 10.1113/jphysiol.1996.sp021320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  28. Lau L. F., Mammen A., Ehlers M. D., Kindler S., Chung W. J., Garner C. C., Huganir R. L. Interaction of the N-methyl-D-aspartate receptor complex with a novel synapse-associated protein, SAP102. J Biol Chem. 1996 Aug 30;271(35):21622–21628. doi: 10.1074/jbc.271.35.21622. [DOI] [PubMed] [Google Scholar]
  29. Lieberman D. N., Mody I. Regulation of NMDA channel function by endogenous Ca(2+)-dependent phosphatase. Nature. 1994 May 19;369(6477):235–239. doi: 10.1038/369235a0. [DOI] [PubMed] [Google Scholar]
  30. Lombardo C. R., Weed S. A., Kennedy S. P., Forget B. G., Morrow J. S. Beta II-spectrin (fodrin) and beta I epsilon 2-spectrin (muscle) contain NH2- and COOH-terminal membrane association domains (MAD1 and MAD2). J Biol Chem. 1994 Nov 18;269(46):29212–29219. [PubMed] [Google Scholar]
  31. Lu P. W., Soong C. J., Tao M. Phosphorylation of ankyrin decreases its affinity for spectrin tetramer. J Biol Chem. 1985 Dec 5;260(28):14958–14964. [PubMed] [Google Scholar]
  32. Lynch G., Baudry M. Brain spectrin, calpain and long-term changes in synaptic efficacy. Brain Res Bull. 1987 Jun;18(6):809–815. doi: 10.1016/0361-9230(87)90220-6. [DOI] [PubMed] [Google Scholar]
  33. Malchiodi-Albedi F., Ceccarini M., Winkelmann J. C., Morrow J. S., Petrucci T. C. The 270 kDa splice variant of erythrocyte beta-spectrin (beta I sigma 2) segregates in vivo and in vitro to specific domains of cerebellar neurons. J Cell Sci. 1993 Sep;106(Pt 1):67–78. doi: 10.1242/jcs.106.1.67. [DOI] [PubMed] [Google Scholar]
  34. Maren S., Baudry M. Properties and mechanisms of long-term synaptic plasticity in the mammalian brain: relationships to learning and memory. Neurobiol Learn Mem. 1995 Jan;63(1):1–18. doi: 10.1006/nlme.1995.1001. [DOI] [PubMed] [Google Scholar]
  35. Moon I. S., Apperson M. L., Kennedy M. B. The major tyrosine-phosphorylated protein in the postsynaptic density fraction is N-methyl-D-aspartate receptor subunit 2B. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3954–3958. doi: 10.1073/pnas.91.9.3954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Morrow J. S. The spectrin membrane skeleton: emerging concepts. Curr Opin Cell Biol. 1989 Feb;1(1):23–29. doi: 10.1016/s0955-0674(89)80032-8. [DOI] [PubMed] [Google Scholar]
  37. Müller B. M., Kistner U., Kindler S., Chung W. J., Kuhlendahl S., Fenster S. D., Lau L. F., Veh R. W., Huganir R. L., Gundelfinger E. D. SAP102, a novel postsynaptic protein that interacts with NMDA receptor complexes in vivo. Neuron. 1996 Aug;17(2):255–265. doi: 10.1016/s0896-6273(00)80157-9. [DOI] [PubMed] [Google Scholar]
  38. Niethammer M., Kim E., Sheng M. Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases. J Neurosci. 1996 Apr 1;16(7):2157–2163. doi: 10.1523/JNEUROSCI.16-07-02157.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Noble M. E., Musacchio A., Saraste M., Courtneidge S. A., Wierenga R. K. Crystal structure of the SH3 domain in human Fyn; comparison of the three-dimensional structures of SH3 domains in tyrosine kinases and spectrin. EMBO J. 1993 Jul;12(7):2617–2624. doi: 10.2210/pdb1shf/pdb. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Omkumar R. V., Kiely M. J., Rosenstein A. J., Min K. T., Kennedy M. B. Identification of a phosphorylation site for calcium/calmodulindependent protein kinase II in the NR2B subunit of the N-methyl-D-aspartate receptor. J Biol Chem. 1996 Dec 6;271(49):31670–31678. doi: 10.1074/jbc.271.49.31670. [DOI] [PubMed] [Google Scholar]
  41. Paoletti P., Ascher P. Mechanosensitivity of NMDA receptors in cultured mouse central neurons. Neuron. 1994 Sep;13(3):645–655. doi: 10.1016/0896-6273(94)90032-9. [DOI] [PubMed] [Google Scholar]
  42. Papa M., Bundman M. C., Greenberger V., Segal M. Morphological analysis of dendritic spine development in primary cultures of hippocampal neurons. J Neurosci. 1995 Jan;15(1 Pt 1):1–11. doi: 10.1523/JNEUROSCI.15-01-00001.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Papa M., Segal M. Morphological plasticity in dendritic spines of cultured hippocampal neurons. Neuroscience. 1996 Apr;71(4):1005–1011. doi: 10.1016/0306-4522(95)00490-4. [DOI] [PubMed] [Google Scholar]
  44. Petralia R. S., Wang Y. X., Wenthold R. J. The NMDA receptor subunits NR2A and NR2B show histological and ultrastructural localization patterns similar to those of NR1. J Neurosci. 1994 Oct;14(10):6102–6120. doi: 10.1523/JNEUROSCI.14-10-06102.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Petralia R. S., Yokotani N., Wenthold R. J. Light and electron microscope distribution of the NMDA receptor subunit NMDAR1 in the rat nervous system using a selective anti-peptide antibody. J Neurosci. 1994 Feb;14(2):667–696. doi: 10.1523/JNEUROSCI.14-02-00667.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Raman I. M., Tong G., Jahr C. E. Beta-adrenergic regulation of synaptic NMDA receptors by cAMP-dependent protein kinase. Neuron. 1996 Feb;16(2):415–421. doi: 10.1016/s0896-6273(00)80059-8. [DOI] [PubMed] [Google Scholar]
  47. Rosenblum K., Berman D. E., Hazvi S., Lamprecht R., Dudai Y. NMDA receptor and the tyrosine phosphorylation of its 2B subunit in taste learning in the rat insular cortex. J Neurosci. 1997 Jul 1;17(13):5129–5135. doi: 10.1523/JNEUROSCI.17-13-05129.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Rosenblum K., Dudai Y., Richter-Levin G. Long-term potentiation increases tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit 2B in rat dentate gyrus in vivo. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10457–10460. doi: 10.1073/pnas.93.19.10457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Rosenmund C., Westbrook G. L. Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron. 1993 May;10(5):805–814. doi: 10.1016/0896-6273(93)90197-y. [DOI] [PubMed] [Google Scholar]
  50. Rosenmund C., Westbrook G. L. Rundown of N-methyl-D-aspartate channels during whole-cell recording in rat hippocampal neurons: role of Ca2+ and ATP. J Physiol. 1993 Oct;470:705–729. doi: 10.1113/jphysiol.1993.sp019884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Seubert P., Larson J., Oliver M., Jung M. W., Baudry M., Lynch G. Stimulation of NMDA receptors induces proteolysis of spectrin in hippocampus. Brain Res. 1988 Sep 13;460(1):189–194. doi: 10.1016/0006-8993(88)91222-x. [DOI] [PubMed] [Google Scholar]
  52. Siman R., Noszek J. C. Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron. 1988 Jun;1(4):279–287. doi: 10.1016/0896-6273(88)90076-1. [DOI] [PubMed] [Google Scholar]
  53. Steiner J. P., Walke H. T., Jr, Bennett V. Calcium/calmodulin inhibits direct binding of spectrin to synaptosomal membranes. J Biol Chem. 1989 Feb 15;264(5):2783–2791. [PubMed] [Google Scholar]
  54. Suzuki T., Okumura-Noji K. NMDA receptor subunits epsilon 1 (NR2A) and epsilon 2 (NR2B) are substrates for Fyn in the postsynaptic density fraction isolated from the rat brain. Biochem Biophys Res Commun. 1995 Nov 13;216(2):582–588. doi: 10.1006/bbrc.1995.2662. [DOI] [PubMed] [Google Scholar]
  55. Suzuki T., Okumura-Noji K., Tanaka R., Ogura A., Nakamura K., Kudo Y., Tada T. Characterization of protein kinase C activities in postsynaptic density fractions prepared from cerebral cortex, hippocampus, and cerebellum. Brain Res. 1993 Aug 13;619(1-2):69–75. doi: 10.1016/0006-8993(93)91596-k. [DOI] [PubMed] [Google Scholar]
  56. Tingley W. G., Ehlers M. D., Kameyama K., Doherty C., Ptak J. B., Riley C. T., Huganir R. L. Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-D-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. J Biol Chem. 1997 Feb 21;272(8):5157–5166. doi: 10.1074/jbc.272.8.5157. [DOI] [PubMed] [Google Scholar]
  57. Tingley W. G., Roche K. W., Thompson A. K., Huganir R. L. Regulation of NMDA receptor phosphorylation by alternative splicing of the C-terminal domain. Nature. 1993 Jul 1;364(6432):70–73. doi: 10.1038/364070a0. [DOI] [PubMed] [Google Scholar]
  58. Travé G., Lacombe P. J., Pfuhl M., Saraste M., Pastore A. Molecular mechanism of the calcium-induced conformational change in the spectrin EF-hands. EMBO J. 1995 Oct 16;14(20):4922–4931. doi: 10.1002/j.1460-2075.1995.tb00175.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Vanderklish P., Saido T. C., Gall C., Arai A., Lynch G. Proteolysis of spectrin by calpain accompanies theta-burst stimulation in cultured hippocampal slices. Brain Res Mol Brain Res. 1995 Aug;32(1):25–35. doi: 10.1016/0169-328x(95)00057-y. [DOI] [PubMed] [Google Scholar]
  60. Viguera A. R., Jiménez M. A., Rico M., Serrano L. Conformational analysis of peptides corresponding to beta-hairpins and a beta-sheet that represent the entire sequence of the alpha-spectrin SH3 domain. J Mol Biol. 1996 Jan 26;255(3):507–521. doi: 10.1006/jmbi.1996.0042. [DOI] [PubMed] [Google Scholar]
  61. Walsh M. J., Kuruc N. The postsynaptic density: constituent and associated proteins characterized by electrophoresis, immunoblotting, and peptide sequencing. J Neurochem. 1992 Aug;59(2):667–678. doi: 10.1111/j.1471-4159.1992.tb09421.x. [DOI] [PubMed] [Google Scholar]
  62. Wyszynski M., Lin J., Rao A., Nigh E., Beggs A. H., Craig A. M., Sheng M. Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature. 1997 Jan 30;385(6615):439–442. doi: 10.1038/385439a0. [DOI] [PubMed] [Google Scholar]
  63. Yu X. M., Askalan R., Keil G. J., 2nd, Salter M. W. NMDA channel regulation by channel-associated protein tyrosine kinase Src. Science. 1997 Jan 31;275(5300):674–678. doi: 10.1126/science.275.5300.674. [DOI] [PubMed] [Google Scholar]
  64. Zagon I. S., Higbee R., Riederer B. M., Goodman S. R. Spectrin subtypes in mammalian brain: an immunoelectron microscopic study. J Neurosci. 1986 Oct;6(10):2977–2986. doi: 10.1523/JNEUROSCI.06-10-02977.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES