Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Jul 15;17(14):4018–4028. doi: 10.1093/emboj/17.14.4018

Developmentally and spatially regulated activation of a Dictyostelium STAT protein by a serpentine receptor.

T Araki 1, M Gamper 1, A Early 1, M Fukuzawa 1, T Abe 1, T Kawata 1, E Kim 1, R A Firtel 1, J G Williams 1
PMCID: PMC1170735  PMID: 9670017

Abstract

Dd-STAT, the protein that in part controls Dictyostelium stalk cell differentiation, is a structural and functional homolog of metazoan signal transducers and activators of transcription (STATs). Although present during growth and throughout development, Dd-STAT's tyrosine phosphorylation and nuclear localization are developmentally and spatially regulated. Prior to late aggregation, Dd-STAT is not tyrosine phosphorylated and is not selectively localized in the nucleus. During mound formation, the time at which cell-type specific gene expression initiates, Dd-STAT becomes tyrosine phosphorylated and translocates into the nuclei of all cells. The tyrosine phosphorylation and nuclear localization of Dd-STAT are induced very rapidly by extracellular cAMP through the serpentine cAMP receptor cAR1, with Dd-STAT tyrosine phosphorylation being detectable within 10 s of stimulation. This activation is independent of the only known Gbeta subunit, suggesting that it may be G-protein independent. Nuclear enrichment of Dd-STAT is selectively maintained within the sub-population of prestalk cells that form the tip, the organizing center of the slug, but is lost in most of the other cells of the slug. This spatial patterning of Dd-STAT nuclear localization is consistent with its known role as a negative regulator of stalk-cell differentiation.

Full Text

The Full Text of this article is available as a PDF (464.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe K., Yanagisawa K. A new class of rapidly developing mutants in Dictyostelium discoideum: implications for cyclic AMP metabolism and cell differentiation. Dev Biol. 1983 Jan;95(1):200–210. doi: 10.1016/0012-1606(83)90018-0. [DOI] [PubMed] [Google Scholar]
  2. Ali M. S., Sayeski P. P., Dirksen L. B., Hayzer D. J., Marrero M. B., Bernstein K. E. Dependence on the motif YIPP for the physical association of Jak2 kinase with the intracellular carboxyl tail of the angiotensin II AT1 receptor. J Biol Chem. 1997 Sep 12;272(37):23382–23388. doi: 10.1074/jbc.272.37.23382. [DOI] [PubMed] [Google Scholar]
  3. Bretschneider T., Siegert F., Weijer C. J. Three-dimensional scroll waves of cAMP could direct cell movement and gene expression in Dictyostelium slugs. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4387–4391. doi: 10.1073/pnas.92.10.4387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ceccarelli A., Mahbubani H., Williams J. G. Positively and negatively acting signals regulating stalk cell and anterior-like cell differentiation in Dictyostelium. Cell. 1991 Jun 14;65(6):983–989. doi: 10.1016/0092-8674(91)90550-i. [DOI] [PubMed] [Google Scholar]
  5. Chen M. Y., Insall R. H., Devreotes P. N. Signaling through chemoattractant receptors in Dictyostelium. Trends Genet. 1996 Feb;12(2):52–57. doi: 10.1016/0168-9525(96)81400-4. [DOI] [PubMed] [Google Scholar]
  6. Darnell J. E., Jr STATs and gene regulation. Science. 1997 Sep 12;277(5332):1630–1635. doi: 10.1126/science.277.5332.1630. [DOI] [PubMed] [Google Scholar]
  7. Duncan S. A., Zhong Z., Wen Z., Darnell J. E., Jr STAT signaling is active during early mammalian development. Dev Dyn. 1997 Feb;208(2):190–198. doi: 10.1002/(SICI)1097-0177(199702)208:2<190::AID-AJA6>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  8. Early A. E., Gaskell M. J., Traynor D., Williams J. G. Two distinct populations of prestalk cells within the tip of the migratory Dictyostelium slug with differing fates at culmination. Development. 1993 Jun;118(2):353–362. doi: 10.1242/dev.118.2.353. [DOI] [PubMed] [Google Scholar]
  9. Early A., Abe T., Williams J. Evidence for positional differentiation of prestalk cells and for a morphogenetic gradient in Dictyostelium. Cell. 1995 Oct 6;83(1):91–99. doi: 10.1016/0092-8674(95)90237-6. [DOI] [PubMed] [Google Scholar]
  10. Esch R. K., Firtel R. A. cAMP and cell sorting control the spatial expression of a developmentally essential cell-type-specific ras gene in Dictyostelium. Genes Dev. 1991 Jan;5(1):9–21. doi: 10.1101/gad.5.1.9. [DOI] [PubMed] [Google Scholar]
  11. Firtel R. A. Integration of signaling information in controlling cell-fate decisions in Dictyostelium. Genes Dev. 1995 Jun 15;9(12):1427–1444. doi: 10.1101/gad.9.12.1427. [DOI] [PubMed] [Google Scholar]
  12. Firtel R. A. Interacting signaling pathways controlling multicellular development in Dictyostelium. Curr Opin Genet Dev. 1996 Oct;6(5):545–554. doi: 10.1016/s0959-437x(96)80082-7. [DOI] [PubMed] [Google Scholar]
  13. Fukuzawa M., Hopper N., Williams J. cudA: a Dictyostelium gene with pleiotropic effects on cellular differentiation and slug behaviour. Development. 1997 Jul;124(14):2719–2728. doi: 10.1242/dev.124.14.2719. [DOI] [PubMed] [Google Scholar]
  14. Gaskins C., Clark A. M., Aubry L., Segall J. E., Firtel R. A. The Dictyostelium MAP kinase ERK2 regulates multiple, independent developmental pathways. Genes Dev. 1996 Jan 1;10(1):118–128. doi: 10.1101/gad.10.1.118. [DOI] [PubMed] [Google Scholar]
  15. Ginsburg G. T., Gollop R., Yu Y., Louis J. M., Saxe C. L., Kimmel A. R. The regulation of Dictyostelium development by transmembrane signalling. J Eukaryot Microbiol. 1995 May-Jun;42(3):200–205. doi: 10.1111/j.1550-7408.1995.tb01565.x. [DOI] [PubMed] [Google Scholar]
  16. Guillet-Deniau I., Burnol A. F., Girard J. Identification and localization of a skeletal muscle secrotonin 5-HT2A receptor coupled to the Jak/STAT pathway. J Biol Chem. 1997 Jun 6;272(23):14825–14829. doi: 10.1074/jbc.272.23.14825. [DOI] [PubMed] [Google Scholar]
  17. Harwood A. J., Early A., Williams J. G. A repressor controls the timing and spatial localisation of stalk cell-specific gene expression in Dictyostelium. Development. 1993 Aug;118(4):1041–1048. doi: 10.1242/dev.118.4.1041. [DOI] [PubMed] [Google Scholar]
  18. Harwood A. J., Hopper N. A., Simon M. N., Driscoll D. M., Veron M., Williams J. G. Culmination in Dictyostelium is regulated by the cAMP-dependent protein kinase. Cell. 1992 May 15;69(4):615–624. doi: 10.1016/0092-8674(92)90225-2. [DOI] [PubMed] [Google Scholar]
  19. Hopper N. A., Harwood A. J., Bouzid S., Véron M., Williams J. G. Activation of the prespore and spore cell pathway of Dictyostelium differentiation by cAMP-dependent protein kinase and evidence for its upstream regulation by ammonia. EMBO J. 1993 Jun;12(6):2459–2466. doi: 10.1002/j.1460-2075.1993.tb05900.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Horvath C. M., Darnell J. E. The state of the STATs: recent developments in the study of signal transduction to the nucleus. Curr Opin Cell Biol. 1997 Apr;9(2):233–239. doi: 10.1016/s0955-0674(97)80067-1. [DOI] [PubMed] [Google Scholar]
  21. Hou X. S., Melnick M. B., Perrimon N. Marelle acts downstream of the Drosophila HOP/JAK kinase and encodes a protein similar to the mammalian STATs. Cell. 1996 Feb 9;84(3):411–419. doi: 10.1016/s0092-8674(00)81286-6. [DOI] [PubMed] [Google Scholar]
  22. Ihle J. N., Kerr I. M. Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet. 1995 Feb;11(2):69–74. doi: 10.1016/s0168-9525(00)89000-9. [DOI] [PubMed] [Google Scholar]
  23. Insall R. H., Soede R. D., Schaap P., Devreotes P. N. Two cAMP receptors activate common signaling pathways in Dictyostelium. Mol Biol Cell. 1994 Jun;5(6):703–711. doi: 10.1091/mbc.5.6.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jermyn K. A., Berks M., Kay R. R., Williams J. G. Two distinct classes of prestalk-enriched mRNA sequences in Dictyostelium discoideum. Development. 1987 Aug;100(4):745–755. doi: 10.1242/dev.100.4.745. [DOI] [PubMed] [Google Scholar]
  25. Jermyn K. A., Duffy K. T., Williams J. G. A new anatomy of the prestalk zone in Dictyostelium. Nature. 1989 Jul 13;340(6229):144–146. doi: 10.1038/340144a0. [DOI] [PubMed] [Google Scholar]
  26. Jermyn K. A., Williams J. G. An analysis of culmination in Dictyostelium using prestalk and stalk-specific cell autonomous markers. Development. 1991 Mar;111(3):779–787. doi: 10.1242/dev.111.3.779. [DOI] [PubMed] [Google Scholar]
  27. Jermyn K., Traynor D., Williams J. The initiation of basal disc formation in Dictyostelium discoideum is an early event in culmination. Development. 1996 Mar;122(3):753–760. doi: 10.1242/dev.122.3.753. [DOI] [PubMed] [Google Scholar]
  28. Johnson R. L., Saxe C. L., 3rd, Gollop R., Kimmel A. R., Devreotes P. N. Identification and targeted gene disruption of cAR3, a cAMP receptor subtype expressed during multicellular stages of Dictyostelium development. Genes Dev. 1993 Feb;7(2):273–282. doi: 10.1101/gad.7.2.273. [DOI] [PubMed] [Google Scholar]
  29. Kawata T., Early A., Williams J. Evidence that a combined activator-repressor protein regulates Dictyostelium stalk cell differentiation. EMBO J. 1996 Jun 17;15(12):3085–3092. [PMC free article] [PubMed] [Google Scholar]
  30. Kawata T., Shevchenko A., Fukuzawa M., Jermyn K. A., Totty N. F., Zhukovskaya N. V., Sterling A. E., Mann M., Williams J. G. SH2 signaling in a lower eukaryote: a STAT protein that regulates stalk cell differentiation in dictyostelium. Cell. 1997 Jun 13;89(6):909–916. doi: 10.1016/s0092-8674(00)80276-7. [DOI] [PubMed] [Google Scholar]
  31. Kay R. R., Jermyn K. A. A possible morphogen controlling differentiation in Dictyostelium. Nature. 1983 May 19;303(5914):242–244. doi: 10.1038/303242a0. [DOI] [PubMed] [Google Scholar]
  32. Leaman D. W., Leung S., Li X., Stark G. R. Regulation of STAT-dependent pathways by growth factors and cytokines. FASEB J. 1996 Dec;10(14):1578–1588. [PubMed] [Google Scholar]
  33. Lewis P. J., Magnin T., Errington J. Compartmentalized distribution of the proteins controlling the prespore-specific transcription factor sigmaF of Bacillus subtilis. Genes Cells. 1996 Oct;1(10):881–894. doi: 10.1046/j.1365-2443.1996.750275.x. [DOI] [PubMed] [Google Scholar]
  34. Lilly P., Wu L., Welker D. L., Devreotes P. N. A G-protein beta-subunit is essential for Dictyostelium development. Genes Dev. 1993 Jun;7(6):986–995. doi: 10.1101/gad.7.6.986. [DOI] [PubMed] [Google Scholar]
  35. Maeda M., Aubry L., Insall R., Gaskins C., Devreotes P. N., Firtel R. A. Seven helix chemoattractant receptors transiently stimulate mitogen-activated protein kinase in Dictyostelium. Role of heterotrimeric G proteins. J Biol Chem. 1996 Feb 16;271(7):3351–3354. doi: 10.1074/jbc.271.7.3351. [DOI] [PubMed] [Google Scholar]
  36. Mann S. K., Brown J. M., Briscoe C., Parent C., Pitt G., Devreotes P. N., Firtel R. A. Role of cAMP-dependent protein kinase in controlling aggregation and postaggregative development in Dictyostelium. Dev Biol. 1997 Mar 15;183(2):208–221. doi: 10.1006/dbio.1996.8499. [DOI] [PubMed] [Google Scholar]
  37. Mann S. K., Firtel R. A. A developmentally regulated, putative serine/threonine protein kinase is essential for development in Dictyostelium. Mech Dev. 1991 Sep;35(2):89–101. doi: 10.1016/0925-4773(91)90060-j. [DOI] [PubMed] [Google Scholar]
  38. Marrero M. B., Schieffer B., Paxton W. G., Heerdt L., Berk B. C., Delafontaine P., Bernstein K. E. Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature. 1995 May 18;375(6528):247–250. doi: 10.1038/375247a0. [DOI] [PubMed] [Google Scholar]
  39. McWhinney C. D., Hunt R. A., Conrad K. M., Dostal D. E., Baker K. M. The type I angiotensin II receptor couples to Stat1 and Stat3 activation through Jak2 kinase in neonatal rat cardiac myocytes. J Mol Cell Cardiol. 1997 Sep;29(9):2513–2524. doi: 10.1006/jmcc.1997.0489. [DOI] [PubMed] [Google Scholar]
  40. Mehdy M. C., Firtel R. A. A secreted factor and cyclic AMP jointly regulate cell-type-specific gene expression in Dictyostelium discoideum. Mol Cell Biol. 1985 Apr;5(4):705–713. doi: 10.1128/mcb.5.4.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Milne J. L., Wu L., Caterina M. J., Devreotes P. N. Seven helix cAMP receptors stimulate Ca2+ entry in the absence of functional G proteins in Dictyostelium. J Biol Chem. 1995 Mar 17;270(11):5926–5931. doi: 10.1074/jbc.270.11.5926. [DOI] [PubMed] [Google Scholar]
  42. Morris H. R., Taylor G. W., Masento M. S., Jermyn K. A., Kay R. R. Chemical structure of the morphogen differentiation inducing factor from Dictyostelium discoideum. 1987 Aug 27-Sep 2Nature. 328(6133):811–814. doi: 10.1038/328811a0. [DOI] [PubMed] [Google Scholar]
  43. Reymond C. D., Schaap P., Véron M., Williams J. G. Dual role of cAMP during Dictyostelium development. Experientia. 1995 Dec 18;51(12):1166–1174. doi: 10.1007/BF01944734. [DOI] [PubMed] [Google Scholar]
  44. Saxe C. L., 3rd, Ginsburg G. T., Louis J. M., Johnson R., Devreotes P. N., Kimmel A. R. CAR2, a prestalk cAMP receptor required for normal tip formation and late development of Dictyostelium discoideum. Genes Dev. 1993 Feb;7(2):262–272. doi: 10.1101/gad.7.2.262. [DOI] [PubMed] [Google Scholar]
  45. Saxe C. L., 3rd, Yu Y., Jones C., Bauman A., Haynes C. The cAMP receptor subtype cAR2 is restricted to a subset of prestalk cells during Dictyostelium development and displays unexpected DIF-1 responsiveness. Dev Biol. 1996 Mar 15;174(2):202–213. doi: 10.1006/dbio.1996.0066. [DOI] [PubMed] [Google Scholar]
  46. Schaap P., van Driel R. V. Induction of post-aggregative differentiation in Dictyostelium discoideum by cAMP. Evidence of involvement of the cell surface cAMP receptor. Exp Cell Res. 1985 Aug;159(2):388–398. doi: 10.1016/s0014-4827(85)80012-4. [DOI] [PubMed] [Google Scholar]
  47. Schindler C., Darnell J. E., Jr Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem. 1995;64:621–651. doi: 10.1146/annurev.bi.64.070195.003201. [DOI] [PubMed] [Google Scholar]
  48. Schnitzler G. R., Briscoe C., Brown J. M., Firtel R. A. Serpentine cAMP receptors may act through a G protein-independent pathway to induce postaggregative development in Dictyostelium. Cell. 1995 Jun 2;81(5):737–745. doi: 10.1016/0092-8674(95)90535-9. [DOI] [PubMed] [Google Scholar]
  49. Shuai K., Horvath C. M., Huang L. H., Qureshi S. A., Cowburn D., Darnell J. E., Jr Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell. 1994 Mar 11;76(5):821–828. doi: 10.1016/0092-8674(94)90357-3. [DOI] [PubMed] [Google Scholar]
  50. Siegert F., Weijer C. J. Spiral and concentric waves organize multicellular Dictyostelium mounds. Curr Biol. 1995 Aug 1;5(8):937–943. doi: 10.1016/s0960-9822(95)00184-9. [DOI] [PubMed] [Google Scholar]
  51. Soede R. D., Insall R. H., Devreotes P. N., Schaap P. Extracellular cAMP can restore development in Dictyostelium cells lacking one, but not two subtypes of early cAMP receptors (cARs). Evidence for involvement of cAR1 in aggregative gene expression. Development. 1994 Jul;120(7):1997–2002. doi: 10.1242/dev.120.7.1997. [DOI] [PubMed] [Google Scholar]
  52. Sun T. J., Devreotes P. N. Gene targeting of the aggregation stage cAMP receptor cAR1 in Dictyostelium. Genes Dev. 1991 Apr;5(4):572–582. doi: 10.1101/gad.5.4.572. [DOI] [PubMed] [Google Scholar]
  53. Van Haastert P. J. Transduction of the chemotactic cAMP signal across the plasma membrane of Dictyostelium cells. Experientia. 1995 Dec 18;51(12):1144–1154. doi: 10.1007/BF01944732. [DOI] [PubMed] [Google Scholar]
  54. Watts D. J., Ashworth J. M. Growth of myxameobae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochem J. 1970 Sep;119(2):171–174. doi: 10.1042/bj1190171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Williams J. G., Ceccarelli A., McRobbie S., Mahbubani H., Kay R. R., Early A., Berks M., Jermyn K. A. Direct induction of Dictyostelium prestalk gene expression by DIF provides evidence that DIF is a morphogen. Cell. 1987 Apr 24;49(2):185–192. doi: 10.1016/0092-8674(87)90559-9. [DOI] [PubMed] [Google Scholar]
  56. Williams J. G., Duffy K. T., Lane D. P., McRobbie S. J., Harwood A. J., Traynor D., Kay R. R., Jermyn K. A. Origins of the prestalk-prespore pattern in Dictyostelium development. Cell. 1989 Dec 22;59(6):1157–1163. doi: 10.1016/0092-8674(89)90771-x. [DOI] [PubMed] [Google Scholar]
  57. Wu L., Valkema R., Van Haastert P. J., Devreotes P. N. The G protein beta subunit is essential for multiple responses to chemoattractants in Dictyostelium. J Cell Biol. 1995 Jun;129(6):1667–1675. doi: 10.1083/jcb.129.6.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Yan R., Luo H., Darnell J. E., Jr, Dearolf C. R. A JAK-STAT pathway regulates wing vein formation in Drosophila. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5842–5847. doi: 10.1073/pnas.93.12.5842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Zhukovskaya N., Early A., Kawata T., Abe T., Williams J. cAMP-dependent protein kinase is required for the expression of a gene specifically expressed in Dictyostelium prestalk cells. Dev Biol. 1996 Oct 10;179(1):27–40. doi: 10.1006/dbio.1996.0239. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES