Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Jul 15;17(14):4046–4055. doi: 10.1093/emboj/17.14.4046

Transcriptional activation of c-fos by oncogenic Ha-Ras in mouse mammary epithelial cells requires the combined activities of PKC-lambda, epsilon and zeta.

S Kampfer 1, K Hellbert 1, A Villunger 1, W Doppler 1, G Baier 1, H H Grunicke 1, F Uberall 1
PMCID: PMC1170737  PMID: 9670019

Abstract

The implication of protein kinase C (PKC) isoforms cPKC-alpha, nPKC-epsilon, aPKC-lambda and aPKC-zeta in the transcriptional activation of a c-fos promoter-driven CAT-reporter construct by transforming Ha-Ras has been investigated. This was achieved by employing antisense constructs encoding RNA directed against isoform-specific 5' sequences of the corresponding mRNA, and expression of PKC mutants representing either kinase-defective, dominant negative, or constitutively active forms of the PKC isoforms. The data indicate that in HC11 mouse mammary epithelial cells, transforming Ha-Ras requires the activities of the three PKC isozymes: aPKC-lambda, nPKC-epsilon and aPKC-zeta, not, however, of cPKC-alpha, for the transcriptional activation of c-fos. Co-expression of oncogenic Ha-Ras with combinations of kinase-defective, dominant negative and constitutively active mutants of the various PKC isozymes are in agreement with a tentative model suggesting that, in the signaling pathway from Ha-Ras to the c-fos promoter, aPKC-lambda acts upstream whereas aPKC-zeta functions downstream of nPKC-epsilon.

Full Text

The Full Text of this article is available as a PDF (397.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akimoto K., Mizuno K., Osada S., Hirai S., Tanuma S., Suzuki K., Ohno S. A new member of the third class in the protein kinase C family, PKC lambda, expressed dominantly in an undifferentiated mouse embryonal carcinoma cell line and also in many tissues and cells. J Biol Chem. 1994 Apr 29;269(17):12677–12683. [PubMed] [Google Scholar]
  2. Baier-Bitterlich G., Uberall F., Bauer B., Fresser F., Wachter H., Grunicke H., Utermann G., Altman A., Baier G. Protein kinase C-theta isoenzyme selective stimulation of the transcription factor complex AP-1 in T lymphocytes. Mol Cell Biol. 1996 Apr;16(4):1842–1850. doi: 10.1128/mcb.16.4.1842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beckman B. S. Nuclear protein kinase C activity is decreased in Friend erythroleukemia cells induced to differentiate. Exp Hematol. 1992 Mar;20(3):324–327. [PubMed] [Google Scholar]
  4. Berra E., Díaz-Meco M. T., Lozano J., Frutos S., Municio M. M., Sánchez P., Sanz L., Moscat J. Evidence for a role of MEK and MAPK during signal transduction by protein kinase C zeta. EMBO J. 1995 Dec 15;14(24):6157–6163. doi: 10.1002/j.1460-2075.1995.tb00306.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bjorkoy G., Perander M., Overvatn A., Johansen T. Reversion of Ras- and phosphatidylcholine-hydrolyzing phospholipase C-mediated transformation of NIH 3T3 cells by a dominant interfering mutant of protein kinase C lambda is accompanied by the loss of constitutive nuclear mitogen-activated protein kinase/extracellular signal-regulated kinase activity. J Biol Chem. 1997 Apr 25;272(17):11557–11565. doi: 10.1074/jbc.272.17.11557. [DOI] [PubMed] [Google Scholar]
  6. Bos J. L. p21ras: an oncoprotein functioning in growth factor-induced signal transduction. Eur J Cancer. 1995 Jul-Aug;31A(7-8):1051–1054. doi: 10.1016/0959-8049(95)00168-i. [DOI] [PubMed] [Google Scholar]
  7. Cacace A. M., Ueffing M., Philipp A., Han E. K., Kolch W., Weinstein I. B. PKC epsilon functions as an oncogene by enhancing activation of the Raf kinase. Oncogene. 1996 Dec 19;13(12):2517–2526. [PubMed] [Google Scholar]
  8. Cai H., Smola U., Wixler V., Eisenmann-Tappe I., Diaz-Meco M. T., Moscat J., Rapp U., Cooper G. M. Role of diacylglycerol-regulated protein kinase C isotypes in growth factor activation of the Raf-1 protein kinase. Mol Cell Biol. 1997 Feb;17(2):732–741. doi: 10.1128/mcb.17.2.732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chiarugi V., Magnelli L., Pasquali F., Vannucchi S., Bruni P., Quattrone A., Basi G., Capaccioli S., Ruggiero M. Transformation by ras oncogene induces nuclear shift of protein kinase C. Biochem Biophys Res Commun. 1990 Dec 14;173(2):528–533. doi: 10.1016/s0006-291x(05)80066-x. [DOI] [PubMed] [Google Scholar]
  10. Dean N., McKay R., Miraglia L., Howard R., Cooper S., Giddings J., Nicklin P., Meister L., Ziel R., Geiger T. Inhibition of growth of human tumor cell lines in nude mice by an antisense of oligonucleotide inhibitor of protein kinase C-alpha expression. Cancer Res. 1996 Aug 1;56(15):3499–3507. [PubMed] [Google Scholar]
  11. Diaz-Meco M. T., Lozano J., Municio M. M., Berra E., Frutos S., Sanz L., Moscat J. Evidence for the in vitro and in vivo interaction of Ras with protein kinase C zeta. J Biol Chem. 1994 Dec 16;269(50):31706–31710. [PubMed] [Google Scholar]
  12. Diaz-Meco M. T., Municio M. M., Sanchez P., Lozano J., Moscat J. Lambda-interacting protein, a novel protein that specifically interacts with the zinc finger domain of the atypical protein kinase C isotype lambda/iota and stimulates its kinase activity in vitro and in vivo. Mol Cell Biol. 1996 Jan;16(1):105–114. doi: 10.1128/mcb.16.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gauthier-Rouvière C., Fernandez A., Lamb N. J. ras-induced c-fos expression and proliferation in living rat fibroblasts involves C-kinase activation and the serum response element pathway. EMBO J. 1990 Jan;9(1):171–180. doi: 10.1002/j.1460-2075.1990.tb08093.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Genot E. M., Parker P. J., Cantrell D. A. Analysis of the role of protein kinase C-alpha, -epsilon, and -zeta in T cell activation. J Biol Chem. 1995 Apr 28;270(17):9833–9839. doi: 10.1074/jbc.270.17.9833. [DOI] [PubMed] [Google Scholar]
  15. Ha K. S., Exton J. H. Differential translocation of protein kinase C isozymes by thrombin and platelet-derived growth factor. A possible function for phosphatidylcholine-derived diacylglycerol. J Biol Chem. 1993 May 15;268(14):10534–10539. [PubMed] [Google Scholar]
  16. Hsiao W. L., Housey G. M., Johnson M. D., Weinstein I. B. Cells that overproduce protein kinase C are more susceptible to transformation by an activated H-ras oncogene. Mol Cell Biol. 1989 Jun;9(6):2641–2647. doi: 10.1128/mcb.9.6.2641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jelinek T., Dent P., Sturgill T. W., Weber M. J. Ras-induced activation of Raf-1 is dependent on tyrosine phosphorylation. Mol Cell Biol. 1996 Mar;16(3):1027–1034. doi: 10.1128/mcb.16.3.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kerkhoff E., Rapp U. R. Induction of cell proliferation in quiescent NIH 3T3 cells by oncogenic c-Raf-1. Mol Cell Biol. 1997 May;17(5):2576–2586. doi: 10.1128/mcb.17.5.2576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Khosravi-Far R., Solski P. A., Clark G. J., Kinch M. S., Der C. J. Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol Cell Biol. 1995 Nov;15(11):6443–6453. doi: 10.1128/mcb.15.11.6443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kim B. C., Kim J. H. Role of Rac GTPase in the nuclear signaling by EGF. FEBS Lett. 1997 Apr 21;407(1):7–12. doi: 10.1016/s0014-5793(97)00289-5. [DOI] [PubMed] [Google Scholar]
  21. Kim J. H., Kwack H. J., Choi S. E., Kim B. C., Kim Y. S., Kang I. J., Kumar C. C. Essential role of Rac GTPase in hydrogen peroxide-induced activation of c-fos serum response element. FEBS Lett. 1997 Apr 7;406(1-2):93–96. doi: 10.1016/s0014-5793(97)00249-4. [DOI] [PubMed] [Google Scholar]
  22. Koide H., Ogita K., Kikkawa U., Nishizuka Y. Isolation and characterization of the epsilon subspecies of protein kinase C from rat brain. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1149–1153. doi: 10.1073/pnas.89.4.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kolch W., Heidecker G., Lloyd P., Rapp U. R. Raf-1 protein kinase is required for growth of induced NIH/3T3 cells. Nature. 1991 Jan 31;349(6308):426–428. doi: 10.1038/349426a0. [DOI] [PubMed] [Google Scholar]
  24. Lacal J. C., Fleming T. P., Warren B. S., Blumberg P. M., Aaronson S. A. Involvement of functional protein kinase C in the mitogenic response to the H-ras oncogene product. Mol Cell Biol. 1987 Nov;7(11):4146–4149. doi: 10.1128/mcb.7.11.4146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Liao D. F., Monia B., Dean N., Berk B. C. Protein kinase C-zeta mediates angiotensin II activation of ERK1/2 in vascular smooth muscle cells. J Biol Chem. 1997 Mar 7;272(10):6146–6150. doi: 10.1074/jbc.272.10.6146. [DOI] [PubMed] [Google Scholar]
  26. Marquardt B., Frith D., Stabel S. Signalling from TPA to MAP kinase requires protein kinase C, raf and MEK: reconstitution of the signalling pathway in vitro. Oncogene. 1994 Nov;9(11):3213–3218. [PubMed] [Google Scholar]
  27. Marshall M. S. Ras target proteins in eukaryotic cells. FASEB J. 1995 Oct;9(13):1311–1318. doi: 10.1096/fasebj.9.13.7557021. [DOI] [PubMed] [Google Scholar]
  28. Marte B. M., Meyer T., Stabel S., Standke G. J., Jaken S., Fabbro D., Hynes N. E. Protein kinase C and mammary cell differentiation: involvement of protein kinase C alpha in the induction of beta-casein expression. Cell Growth Differ. 1994 Mar;5(3):239–247. [PubMed] [Google Scholar]
  29. Mizukami Y., Hirata T., Yoshida K. Nuclear translocation of PKC zeta during ischemia and its inhibition by wortmannin, an inhibitor of phosphatidylinositol 3-kinase. FEBS Lett. 1997 Jan 20;401(2-3):247–251. doi: 10.1016/s0014-5793(96)01481-0. [DOI] [PubMed] [Google Scholar]
  30. Moriya S., Kazlauskas A., Akimoto K., Hirai S., Mizuno K., Takenawa T., Fukui Y., Watanabe Y., Ozaki S., Ohno S. Platelet-derived growth factor activates protein kinase C epsilon through redundant and independent signaling pathways involving phospholipase C gamma or phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):151–155. doi: 10.1073/pnas.93.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Morris J. D., Price B., Lloyd A. C., Self A. J., Marshall C. J., Hall A. Scrape-loading of Swiss 3T3 cells with ras protein rapidly activates protein kinase C in the absence of phosphoinositide hydrolysis. Oncogene. 1989 Jan;4(1):27–31. [PubMed] [Google Scholar]
  32. Morrison P., Saltiel A. R., Rosner M. R. Role of mitogen-activated protein kinase kinase in regulation of the epidermal growth factor receptor by protein kinase C. J Biol Chem. 1996 May 31;271(22):12891–12896. doi: 10.1074/jbc.271.22.12891. [DOI] [PubMed] [Google Scholar]
  33. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992 Oct 23;258(5082):607–614. doi: 10.1126/science.1411571. [DOI] [PubMed] [Google Scholar]
  34. Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 1995 Apr;9(7):484–496. [PubMed] [Google Scholar]
  35. Okazaki K., Sagata N. MAP kinase activation is essential for oncogenic transformation of NIH3T3 cells by Mos. Oncogene. 1995 Mar 16;10(6):1149–1157. [PubMed] [Google Scholar]
  36. Perletti G. P., Folini M., Lin H. C., Mischak H., Piccinini F., Tashjian A. H., Jr Overexpression of protein kinase C epsilon is oncogenic in rat colonic epithelial cells. Oncogene. 1996 Feb 15;12(4):847–854. [PubMed] [Google Scholar]
  37. Powell C. T., Gschwend J. E., Fair W. R., Brittis N. J., Stec D., Huryk R. Overexpression of protein kinase C-zeta (PKC-zeta) inhibits invasive and metastatic abilities of Dunning R-3327 MAT-LyLu rat prostate cancer cells. Cancer Res. 1996 Sep 15;56(18):4137–4141. [PubMed] [Google Scholar]
  38. Qiu R. G., Chen J., Kirn D., McCormick F., Symons M. An essential role for Rac in Ras transformation. Nature. 1995 Mar 30;374(6521):457–459. doi: 10.1038/374457a0. [DOI] [PubMed] [Google Scholar]
  39. Sauma S., Friedman E. Increased expression of protein kinase C beta activates ERK3. J Biol Chem. 1996 May 10;271(19):11422–11426. doi: 10.1074/jbc.271.19.11422. [DOI] [PubMed] [Google Scholar]
  40. Sauma S., Yan Z., Ohno S., Friedman E. Protein kinase C beta 1 and protein kinase C beta 2 activate p57 mitogen-activated protein kinase and block differentiation in colon carcinoma cells. Cell Growth Differ. 1996 May;7(5):587–594. [PubMed] [Google Scholar]
  41. Schaap D., van der Wal J., Howe L. R., Marshall C. J., van Blitterswijk W. J. A dominant-negative mutant of raf blocks mitogen-activated protein kinase activation by growth factors and oncogenic p21ras. J Biol Chem. 1993 Sep 25;268(27):20232–20236. [PubMed] [Google Scholar]
  42. Treisman R. Journey to the surface of the cell: Fos regulation and the SRE. EMBO J. 1995 Oct 16;14(20):4905–4913. doi: 10.1002/j.1460-2075.1995.tb00173.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Uberall F., Giselbrecht S., Hellbert K., Fresser F., Bauer B., Gschwendt M., Grunicke H. H., Baier G. Conventional PKC-alpha, novel PKC-epsilon and PKC-theta, but not atypical PKC-lambda are MARCKS kinases in intact NIH 3T3 fibroblasts. J Biol Chem. 1997 Feb 14;272(7):4072–4078. doi: 10.1074/jbc.272.7.4072. [DOI] [PubMed] [Google Scholar]
  44. Uberall F., Kampfer S., Doppler W., Grunicke H. H. Activation of c-fos expression by transforming Ha-ras in HC11 mouse mammary epithelial cells is PKC-dependent and mediated by the serum response element. Cell Signal. 1994 Mar;6(3):285–297. doi: 10.1016/0898-6568(94)90033-7. [DOI] [PubMed] [Google Scholar]
  45. Wolfman A., Macara I. G. Elevated levels of diacylglycerol and decreased phorbol ester sensitivity in ras-transformed fibroblasts. Nature. 1987 Jan 22;325(6102):359–361. doi: 10.1038/325359a0. [DOI] [PubMed] [Google Scholar]
  46. Zou Y., Komuro I., Yamazaki T., Aikawa R., Kudoh S., Shiojima I., Hiroi Y., Mizuno T., Yazaki Y. Protein kinase C, but not tyrosine kinases or Ras, plays a critical role in angiotensin II-induced activation of Raf-1 kinase and extracellular signal-regulated protein kinases in cardiac myocytes. J Biol Chem. 1996 Dec 27;271(52):33592–33597. doi: 10.1074/jbc.271.52.33592. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES