Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Jul 15;17(14):4147–4157. doi: 10.1093/emboj/17.14.4147

Repeat instability at human minisatellites arising from meiotic recombination.

A J Jeffreys 1, D L Neil 1, R Neumann 1
PMCID: PMC1170747  PMID: 9670029

Abstract

Little is known about the role of meiotic recombination processes such as unequal crossover in driving instability at tandem repeat DNA. Methods have therefore been developed to detect meiotic crossovers within two different GC-rich minisatellite repeat arrays in humans, both in families and in sperm DNA. Both loci normally mutate in the germline by complex conversion-like transfer of repeats between alleles. Analysis shows that inter-allelic unequal crossovers also occur at both loci, although at low frequency, to yield simple recombinant repeat arrays with exchange of flanking markers. Equal crossovers between aligned alleles, resulting in recombinant alleles but without change in repeat copy number, also occur in sperm at a similar frequency to unequal crossovers. Both crossover and conversion show polarity in the repeat array and are co-suppressed in an allele showing unusual germline stability. This provides evidence that minisatellite conversion and crossover arise by a common mechanism, perhaps by alternative processing of a meiotic recombination initiation complex, and implies that minisatellite instability is a by-product of meiotic recombination in repeat DNA. While minisatellite recombination is infrequent, crossover rates indicate that the unstable end of a human minisatellite can act as a recombination warm-spot, even between sequence-heterologous alleles.

Full Text

The Full Text of this article is available as a PDF (582.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appelgren H., Cederberg H., Rannug U. Mutations at the human minisatellite MS32 integrated in yeast occur with high frequency in meiosis and involve complex recombination events. Mol Gen Genet. 1997 Sep;256(1):7–17. doi: 10.1007/s004380050540. [DOI] [PubMed] [Google Scholar]
  2. Borts R. H., Haber J. E. Meiotic recombination in yeast: alteration by multiple heterozygosities. Science. 1987 Sep 18;237(4821):1459–1465. doi: 10.1126/science.2820060. [DOI] [PubMed] [Google Scholar]
  3. Borts R. H., Leung W. Y., Kramer W., Kramer B., Williamson M., Fogel S., Haber J. E. Mismatch repair-induced meiotic recombination requires the pms1 gene product. Genetics. 1990 Mar;124(3):573–584. doi: 10.1093/genetics/124.3.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buard J., Jeffreys A. J. Big, bad minisatellites. Nat Genet. 1997 Apr;15(4):327–328. doi: 10.1038/ng0497-327. [DOI] [PubMed] [Google Scholar]
  5. Buard J., Vergnaud G. Complex recombination events at the hypermutable minisatellite CEB1 (D2S90). EMBO J. 1994 Jul 1;13(13):3203–3210. doi: 10.1002/j.1460-2075.1994.tb06619.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cheng S., Fockler C., Barnes W. M., Higuchi R. Effective amplification of long targets from cloned inserts and human genomic DNA. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5695–5699. doi: 10.1073/pnas.91.12.5695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Don R. H., Cox P. T., Wainwright B. J., Baker K., Mattick J. S. 'Touchdown' PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 1991 Jul 25;19(14):4008–4008. doi: 10.1093/nar/19.14.4008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fogel S., Welch J. W., Louis E. J. Meiotic gene conversion mediates gene amplification in yeast. Cold Spring Harb Symp Quant Biol. 1984;49:55–65. doi: 10.1101/sqb.1984.049.01.009. [DOI] [PubMed] [Google Scholar]
  9. Gyapay G., Morissette J., Vignal A., Dib C., Fizames C., Millasseau P., Marc S., Bernardi G., Lathrop M., Weissenbach J. The 1993-94 Généthon human genetic linkage map. Nat Genet. 1994 Jun;7(2 Spec No):246–339. doi: 10.1038/ng0694supp-246. [DOI] [PubMed] [Google Scholar]
  10. Henke J., Fimmers R., Baur M. P., Henke L. DNA-minisatellite mutations: recent investigations concerning distribution and impact on parentage testing. Int J Legal Med. 1993;105(4):217–222. doi: 10.1007/BF01642797. [DOI] [PubMed] [Google Scholar]
  11. Huang X. L., Tamaki K., Yamamoto T., Suzuki K., Nozawa H., Uchihi R., Katsumata Y., Neil D. L. Analysis of allelic structures at the D7S21 (MS31A) locus in the Japanese, using minisatellite variant repeat mapping by PCR (MVR-PCR). Ann Hum Genet. 1996 Jul;60(Pt 4):271–279. doi: 10.1111/j.1469-1809.1996.tb01191.x. [DOI] [PubMed] [Google Scholar]
  12. Jeffreys A. J., MacLeod A., Tamaki K., Neil D. L., Monckton D. G. Minisatellite repeat coding as a digital approach to DNA typing. Nature. 1991 Nov 21;354(6350):204–209. doi: 10.1038/354204a0. [DOI] [PubMed] [Google Scholar]
  13. Jeffreys A. J., Neumann R. Somatic mutation processes at a human minisatellite. Hum Mol Genet. 1997 Jan;6(1):129–136. doi: 10.1093/hmg/6.1.129. [DOI] [PubMed] [Google Scholar]
  14. Jeffreys A. J., Neumann R., Wilson V. Repeat unit sequence variation in minisatellites: a novel source of DNA polymorphism for studying variation and mutation by single molecule analysis. Cell. 1990 Feb 9;60(3):473–485. doi: 10.1016/0092-8674(90)90598-9. [DOI] [PubMed] [Google Scholar]
  15. Jeffreys A. J., Royle N. J., Wilson V., Wong Z. Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature. 1988 Mar 17;332(6161):278–281. doi: 10.1038/332278a0. [DOI] [PubMed] [Google Scholar]
  16. Jeffreys A. J., Tamaki K., MacLeod A., Monckton D. G., Neil D. L., Armour J. A. Complex gene conversion events in germline mutation at human minisatellites. Nat Genet. 1994 Feb;6(2):136–145. doi: 10.1038/ng0294-136. [DOI] [PubMed] [Google Scholar]
  17. Jeffreys A. J., Wilson V., Thein S. L. Hypervariable 'minisatellite' regions in human DNA. Nature. 1985 Mar 7;314(6006):67–73. doi: 10.1038/314067a0. [DOI] [PubMed] [Google Scholar]
  18. Levinson G., Gutman G. A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol. 1987 May;4(3):203–221. doi: 10.1093/oxfordjournals.molbev.a040442. [DOI] [PubMed] [Google Scholar]
  19. May C. A., Jeffreys A. J., Armour J. A. Mutation rate heterogeneity and the generation of allele diversity at the human minisatellite MS205 (D16S309). Hum Mol Genet. 1996 Nov;5(11):1823–1833. doi: 10.1093/hmg/5.11.1823. [DOI] [PubMed] [Google Scholar]
  20. Monckton D. G., Neumann R., Guram T., Fretwell N., Tamaki K., MacLeod A., Jeffreys A. J. Minisatellite mutation rate variation associated with a flanking DNA sequence polymorphism. Nat Genet. 1994 Oct;8(2):162–170. doi: 10.1038/ng1094-162. [DOI] [PubMed] [Google Scholar]
  21. Monckton D. G., Tamaki K., MacLeod A., Neil D. L., Jeffreys A. J. Allele-specific MVR-PCR analysis at minisatellite D1S8. Hum Mol Genet. 1993 May;2(5):513–519. doi: 10.1093/hmg/2.5.513. [DOI] [PubMed] [Google Scholar]
  22. Neil D. L., Jeffreys A. J. Digital DNA typing at a second hypervariable locus by minisatellite variant repeat mapping. Hum Mol Genet. 1993 Aug;2(8):1129–1135. doi: 10.1093/hmg/2.8.1129. [DOI] [PubMed] [Google Scholar]
  23. Newton C. R., Graham A., Heptinstall L. E., Powell S. J., Summers C., Kalsheker N., Smith J. C., Markham A. F. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 1989 Apr 11;17(7):2503–2516. doi: 10.1093/nar/17.7.2503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Petes T. D. Unequal meiotic recombination within tandem arrays of yeast ribosomal DNA genes. Cell. 1980 Mar;19(3):765–774. doi: 10.1016/s0092-8674(80)80052-3. [DOI] [PubMed] [Google Scholar]
  25. Rayssiguier C., Thaler D. S., Radman M. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature. 1989 Nov 23;342(6248):396–401. doi: 10.1038/342396a0. [DOI] [PubMed] [Google Scholar]
  26. Royle N. J., Clarkson R. E., Wong Z., Jeffreys A. J. Clustering of hypervariable minisatellites in the proterminal regions of human autosomes. Genomics. 1988 Nov;3(4):352–360. doi: 10.1016/0888-7543(88)90127-9. [DOI] [PubMed] [Google Scholar]
  27. Schalet A. Exchanges at the bobbed locus of Drosophila melanogaster. Genetics. 1969 Sep;63(1):133–153. doi: 10.1093/genetics/63.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Smith G. P. Evolution of repeated DNA sequences by unequal crossover. Science. 1976 Feb 13;191(4227):528–535. doi: 10.1126/science.1251186. [DOI] [PubMed] [Google Scholar]
  29. Szostak J. W., Orr-Weaver T. L., Rothstein R. J., Stahl F. W. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. doi: 10.1016/0092-8674(83)90331-8. [DOI] [PubMed] [Google Scholar]
  30. Tamaki K., Monckton D. G., MacLeod A., Allen M., Jeffreys A. J. Four-state MVR-PCR: increased discrimination of digital DNA typing by simultaneous analysis of two polymorphic sites within minisatellite variant repeats at D1S8. Hum Mol Genet. 1993 Oct;2(10):1629–1632. doi: 10.1093/hmg/2.10.1629. [DOI] [PubMed] [Google Scholar]
  31. Weissenbach J., Gyapay G., Dib C., Vignal A., Morissette J., Millasseau P., Vaysseix G., Lathrop M. A second-generation linkage map of the human genome. Nature. 1992 Oct 29;359(6398):794–801. doi: 10.1038/359794a0. [DOI] [PubMed] [Google Scholar]
  32. Wolff R. K., Plaetke R., Jeffreys A. J., White R. Unequal crossingover between homologous chromosomes is not the major mechanism involved in the generation of new alleles at VNTR loci. Genomics. 1989 Aug;5(2):382–384. doi: 10.1016/0888-7543(89)90076-1. [DOI] [PubMed] [Google Scholar]
  33. Wong Z., Wilson V., Patel I., Povey S., Jeffreys A. J. Characterization of a panel of highly variable minisatellites cloned from human DNA. Ann Hum Genet. 1987 Oct;51(Pt 4):269–288. doi: 10.1111/j.1469-1809.1987.tb01062.x. [DOI] [PubMed] [Google Scholar]
  34. Yoshino M., Sagai T., Lindahl K. F., Toyoda Y., Moriwaki K., Shiroishi T. Allele-dependent recombination frequency: homology requirement in meiotic recombination at the hot spot in the mouse major histocompatibility complex. Genomics. 1995 May 20;27(2):298–305. doi: 10.1006/geno.1995.1046. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES