Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Aug 3;17(15):4213–4225. doi: 10.1093/emboj/17.15.4213

Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice.

R Dono 1, G Texido 1, R Dussel 1, H Ehmke 1, R Zeller 1
PMCID: PMC1170755  PMID: 9687490

Abstract

Fibroblast growth factor-2 (FGF-2) has been implicated in various signaling processes which control embryonic growth and differentiation, adult physiology and pathology. To analyze the in vivo functions of this signaling molecule, the FGF-2 gene was inactivated by homologous recombination in mouse embryonic stem cells. FGF-2-deficient mice are viable, but display cerebral cortex defects at birth. Bromodeoxyuridine pulse labeling of embryos showed that proliferation of neuronal progenitors is normal, whereas a fraction of them fail to colonize their target layers in the cerebral cortex. A corresponding reduction in parvalbumin-positive neurons is observed in adult cortical layers. Neuronal defects are not limited to the cerebral cortex, as ectopic parvalbumin-positive neurons are present in the hippocampal commissure and neuronal deficiencies are observed in the cervical spinal cord. Physiological studies showed that FGF-2-deficient adult mice are hypotensive. They respond normally to angiotensin II-induced hypertension, whereas neural regulation of blood pressure by the baroreceptor reflex is impaired. The present genetic study establishes that FGF-2 participates in controlling fates, migration and differentiation of neuronal cells, whereas it is not essential for their proliferation. The observed autonomic dysfunction in FGF-2-deficient adult mice uncovers more general roles in neural development and function.

Full Text

The Full Text of this article is available as a PDF (693.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong R. C., Harvath L., Dubois-Dalcq M. E. Type 1 astrocytes and oligodendrocyte-type 2 astrocyte glial progenitors migrate toward distinct molecules. J Neurosci Res. 1990 Nov;27(3):400–407. doi: 10.1002/jnr.490270319. [DOI] [PubMed] [Google Scholar]
  2. Celio M. R. Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience. 1990;35(2):375–475. doi: 10.1016/0306-4522(90)90091-h. [DOI] [PubMed] [Google Scholar]
  3. Chae T., Kwon Y. T., Bronson R., Dikkes P., Li E., Tsai L. H. Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron. 1997 Jan;18(1):29–42. doi: 10.1016/s0896-6273(01)80044-1. [DOI] [PubMed] [Google Scholar]
  4. Cheng G. C., Briggs W. H., Gerson D. S., Libby P., Grodzinsky A. J., Gray M. L., Lee R. T. Mechanical strain tightly controls fibroblast growth factor-2 release from cultured human vascular smooth muscle cells. Circ Res. 1997 Jan;80(1):28–36. doi: 10.1161/01.res.80.1.28. [DOI] [PubMed] [Google Scholar]
  5. Clarke M. S., Caldwell R. W., Chiao H., Miyake K., McNeil P. L. Contraction-induced cell wounding and release of fibroblast growth factor in heart. Circ Res. 1995 Jun;76(6):927–934. doi: 10.1161/01.res.76.6.927. [DOI] [PubMed] [Google Scholar]
  6. Crossley P. H., Martinez S., Martin G. R. Midbrain development induced by FGF8 in the chick embryo. Nature. 1996 Mar 7;380(6569):66–68. doi: 10.1038/380066a0. [DOI] [PubMed] [Google Scholar]
  7. Cuevas P., Carceller F., Ortega S., Zazo M., Nieto I., Giménez-Gallego G. Hypotensive activity of fibroblast growth factor. Science. 1991 Nov 22;254(5035):1208–1210. doi: 10.1126/science.1957172. [DOI] [PubMed] [Google Scholar]
  8. Cuevas P., García-Calvo M., Carceller F., Reimers D., Zazo M., Cuevas B., Muñoz-Willery I., Martínez-Coso V., Lamas S., Giménez-Gallego G. Correction of hypertension by normalization of endothelial levels of fibroblast growth factor and nitric oxide synthase in spontaneously hypertensive rats. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11996–12001. doi: 10.1073/pnas.93.21.11996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. D'Arcangelo G., Miao G. G., Chen S. C., Soares H. D., Morgan J. I., Curran T. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature. 1995 Apr 20;374(6524):719–723. doi: 10.1038/374719a0. [DOI] [PubMed] [Google Scholar]
  10. D'Mello S. R. Molecular regulation of neuronal apoptosis. Curr Top Dev Biol. 1998;39:187–213. doi: 10.1016/s0070-2153(08)60456-1. [DOI] [PubMed] [Google Scholar]
  11. Davis M. G., Zhou M., Ali S., Coffin J. D., Doetschman T., Dorn G. W., 2nd Intracrine and autocrine effects of basic fibroblast growth factor in vascular smooth muscle cells. J Mol Cell Cardiol. 1997 Apr;29(4):1061–1072. doi: 10.1006/jmcc.1997.0383. [DOI] [PubMed] [Google Scholar]
  12. Dono R., Zeller R. Cell-type-specific nuclear translocation of fibroblast growth factor-2 isoforms during chicken kidney and limb morphogenesis. Dev Biol. 1994 Jun;163(2):316–330. doi: 10.1006/dbio.1994.1151. [DOI] [PubMed] [Google Scholar]
  13. Eckenstein F. P. Fibroblast growth factors in the nervous system. J Neurobiol. 1994 Nov;25(11):1467–1480. doi: 10.1002/neu.480251112. [DOI] [PubMed] [Google Scholar]
  14. Fishell G., Hatten M. E. Astrotactin provides a receptor system for CNS neuronal migration. Development. 1991 Nov;113(3):755–765. doi: 10.1242/dev.113.3.755. [DOI] [PubMed] [Google Scholar]
  15. Ghosh A., Greenberg M. E. Distinct roles for bFGF and NT-3 in the regulation of cortical neurogenesis. Neuron. 1995 Jul;15(1):89–103. doi: 10.1016/0896-6273(95)90067-5. [DOI] [PubMed] [Google Scholar]
  16. Gisselbrecht S., Skeath J. B., Doe C. Q., Michelson A. M. heartless encodes a fibroblast growth factor receptor (DFR1/DFGF-R2) involved in the directional migration of early mesodermal cells in the Drosophila embryo. Genes Dev. 1996 Dec 1;10(23):3003–3017. doi: 10.1101/gad.10.23.3003. [DOI] [PubMed] [Google Scholar]
  17. Hatten M. E. The role of migration in central nervous system neuronal development. Curr Opin Neurobiol. 1993 Feb;3(1):38–44. doi: 10.1016/0959-4388(93)90033-u. [DOI] [PubMed] [Google Scholar]
  18. Howell B. W., Hawkes R., Soriano P., Cooper J. A. Neuronal position in the developing brain is regulated by mouse disabled-1. Nature. 1997 Oct 16;389(6652):733–737. doi: 10.1038/39607. [DOI] [PubMed] [Google Scholar]
  19. Hébert J. M., Basilico C., Goldfarb M., Haub O., Martin G. R. Isolation of cDNAs encoding four mouse FGF family members and characterization of their expression patterns during embryogenesis. Dev Biol. 1990 Apr;138(2):454–463. doi: 10.1016/0012-1606(90)90211-z. [DOI] [PubMed] [Google Scholar]
  20. Hébert J. M., Rosenquist T., Götz J., Martin G. R. FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell. 1994 Sep 23;78(6):1017–1025. doi: 10.1016/0092-8674(94)90276-3. [DOI] [PubMed] [Google Scholar]
  21. Kardami E., Fandrich R. R. Basic fibroblast growth factor in atria and ventricles of the vertebrate heart. J Cell Biol. 1989 Oct;109(4 Pt 1):1865–1875. doi: 10.1083/jcb.109.4.1865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kaye D., Pimental D., Prasad S., Mäki T., Berger H. J., McNeil P. L., Smith T. W., Kelly R. A. Role of transiently altered sarcolemmal membrane permeability and basic fibroblast growth factor release in the hypertrophic response of adult rat ventricular myocytes to increased mechanical activity in vitro. J Clin Invest. 1996 Jan 15;97(2):281–291. doi: 10.1172/JCI118414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kim S., Ohta K., Hamaguchi A., Yukimura T., Miura K., Iwao H. Angiotensin II induces cardiac phenotypic modulation and remodeling in vivo in rats. Hypertension. 1995 Jun;25(6):1252–1259. doi: 10.1161/01.hyp.25.6.1252. [DOI] [PubMed] [Google Scholar]
  24. Kinoshita Y., Kinoshita C., Heuer J. G., Bothwell M. Basic fibroblast growth factor promotes adhesive interactions of neuroepithelial cells from chick neural tube with extracellular matrix proteins in culture. Development. 1993 Nov;119(3):943–956. doi: 10.1242/dev.119.3.943. [DOI] [PubMed] [Google Scholar]
  25. Klämbt C., Glazer L., Shilo B. Z. breathless, a Drosophila FGF receptor homolog, is essential for migration of tracheal and specific midline glial cells. Genes Dev. 1992 Sep;6(9):1668–1678. doi: 10.1101/gad.6.9.1668. [DOI] [PubMed] [Google Scholar]
  26. Krege J. H., John S. W., Langenbach L. L., Hodgin J. B., Hagaman J. R., Bachman E. S., Jennette J. C., O'Brien D. A., Smithies O. Male-female differences in fertility and blood pressure in ACE-deficient mice. Nature. 1995 May 11;375(6527):146–148. doi: 10.1038/375146a0. [DOI] [PubMed] [Google Scholar]
  27. Lazarous D. F., Scheinowitz M., Shou M., Hodge E., Rajanayagam S., Hunsberger S., Robison W. G., Jr, Stiber J. A., Correa R., Epstein S. E. Effects of chronic systemic administration of basic fibroblast growth factor on collateral development in the canine heart. Circulation. 1995 Jan 1;91(1):145–153. doi: 10.1161/01.cir.91.1.145. [DOI] [PubMed] [Google Scholar]
  28. Lee S. M., Danielian P. S., Fritzsch B., McMahon A. P. Evidence that FGF8 signalling from the midbrain-hindbrain junction regulates growth and polarity in the developing midbrain. Development. 1997 Mar;124(5):959–969. doi: 10.1242/dev.124.5.959. [DOI] [PubMed] [Google Scholar]
  29. Lindner V., Reidy M. A. Expression of basic fibroblast growth factor and its receptor by smooth muscle cells and endothelium in injured rat arteries. An en face study. Circ Res. 1993 Sep;73(3):589–595. doi: 10.1161/01.res.73.3.589. [DOI] [PubMed] [Google Scholar]
  30. Mansour S. L., Goddard J. M., Capecchi M. R. Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear. Development. 1993 Jan;117(1):13–28. doi: 10.1242/dev.117.1.13. [DOI] [PubMed] [Google Scholar]
  31. Mathias C. J., Frankel H. L. Cardiovascular control in spinal man. Annu Rev Physiol. 1988;50:577–592. doi: 10.1146/annurev.ph.50.030188.003045. [DOI] [PubMed] [Google Scholar]
  32. Nagy A., Rossant J., Nagy R., Abramow-Newerly W., Roder J. C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8424–8428. doi: 10.1073/pnas.90.18.8424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Neubüser A., Peters H., Balling R., Martin G. R. Antagonistic interactions between FGF and BMP signaling pathways: a mechanism for positioning the sites of tooth formation. Cell. 1997 Jul 25;90(2):247–255. doi: 10.1016/s0092-8674(00)80333-5. [DOI] [PubMed] [Google Scholar]
  34. Nurcombe V., Ford M. D., Wildschut J. A., Bartlett P. F. Developmental regulation of neural response to FGF-1 and FGF-2 by heparan sulfate proteoglycan. Science. 1993 Apr 2;260(5104):103–106. doi: 10.1126/science.7682010. [DOI] [PubMed] [Google Scholar]
  35. Ohshima T., Ward J. M., Huh C. G., Longenecker G., Veeranna, Pant H. C., Brady R. O., Martin L. J., Kulkarni A. B. Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):11173–11178. doi: 10.1073/pnas.93.20.11173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Osterhout D. J., Ebner S., Xu J., Ornitz D. M., Zazanis G. A., McKinnon R. D. Transplanted oligodendrocyte progenitor cells expressing a dominant-negative FGF receptor transgene fail to migrate in vivo. J Neurosci. 1997 Dec 1;17(23):9122–9132. doi: 10.1523/JNEUROSCI.17-23-09122.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Petroski R. E., Grierson J. P., Choi-Kwon S., Geller H. M. Basic fibroblast growth factor regulates the ability of astrocytes to support hypothalamic neuronal survival in vitro. Dev Biol. 1991 Sep;147(1):1–13. doi: 10.1016/s0012-1606(05)80002-8. [DOI] [PubMed] [Google Scholar]
  38. Qian X., Davis A. A., Goderie S. K., Temple S. FGF2 concentration regulates the generation of neurons and glia from multipotent cortical stem cells. Neuron. 1997 Jan;18(1):81–93. doi: 10.1016/s0896-6273(01)80048-9. [DOI] [PubMed] [Google Scholar]
  39. Ray J., Peterson D. A., Schinstine M., Gage F. H. Proliferation, differentiation, and long-term culture of primary hippocampal neurons. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3602–3606. doi: 10.1073/pnas.90.8.3602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Riese J., Zeller R., Dono R. Nucleo-cytoplasmic translocation and secretion of fibroblast growth factor-2 during avian gastrulation. Mech Dev. 1995 Jan;49(1-2):13–22. doi: 10.1016/0925-4773(94)00296-y. [DOI] [PubMed] [Google Scholar]
  41. Sasai Y., De Robertis E. M. Ectodermal patterning in vertebrate embryos. Dev Biol. 1997 Feb 1;182(1):5–20. doi: 10.1006/dbio.1996.8445. [DOI] [PubMed] [Google Scholar]
  42. Soriano E., Alvarado-Mallart R. M., Dumesnil N., Del Río J. A., Sotelo C. Cajal-Retzius cells regulate the radial glia phenotype in the adult and developing cerebellum and alter granule cell migration. Neuron. 1997 Apr;18(4):563–577. doi: 10.1016/s0896-6273(00)80298-6. [DOI] [PubMed] [Google Scholar]
  43. Stapf C., Lück G., Shakibaei M., Blottner D. Fibroblast growth factor-2 (FGF-2) and FGF-receptor (FGFR-1) immunoreactivity in embryonic spinal autonomic neurons. Cell Tissue Res. 1997 Feb;287(3):471–480. doi: 10.1007/s004410050771. [DOI] [PubMed] [Google Scholar]
  44. Sutherland D., Samakovlis C., Krasnow M. A. branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell. 1996 Dec 13;87(6):1091–1101. doi: 10.1016/s0092-8674(00)81803-6. [DOI] [PubMed] [Google Scholar]
  45. Temple S., Qian X. bFGF, neurotrophins, and the control or cortical neurogenesis. Neuron. 1995 Aug;15(2):249–252. doi: 10.1016/0896-6273(95)90030-6. [DOI] [PubMed] [Google Scholar]
  46. Tybulewicz V. L., Crawford C. E., Jackson P. K., Bronson R. T., Mulligan R. C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell. 1991 Jun 28;65(7):1153–1163. doi: 10.1016/0092-8674(91)90011-m. [DOI] [PubMed] [Google Scholar]
  47. Vescovi A. L., Reynolds B. A., Fraser D. D., Weiss S. bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron. 1993 Nov;11(5):951–966. doi: 10.1016/0896-6273(93)90124-a. [DOI] [PubMed] [Google Scholar]
  48. Vicario-Abejón C., Johe K. K., Hazel T. G., Collazo D., McKay R. D. Functions of basic fibroblast growth factor and neurotrophins in the differentiation of hippocampal neurons. Neuron. 1995 Jul;15(1):105–114. doi: 10.1016/0896-6273(95)90068-3. [DOI] [PubMed] [Google Scholar]
  49. Wilcox B. J., Unnerstall J. R. Expression of acidic fibroblast growth factor mRNA in the developing and adult rat brain. Neuron. 1991 Mar;6(3):397–409. doi: 10.1016/0896-6273(91)90248-x. [DOI] [PubMed] [Google Scholar]
  50. Wilkinson D. G., Peters G., Dickson C., McMahon A. P. Expression of the FGF-related proto-oncogene int-2 during gastrulation and neurulation in the mouse. EMBO J. 1988 Mar;7(3):691–695. doi: 10.1002/j.1460-2075.1988.tb02864.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Yamaguchi T. P., Harpal K., Henkemeyer M., Rossant J. fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev. 1994 Dec 15;8(24):3032–3044. doi: 10.1101/gad.8.24.3032. [DOI] [PubMed] [Google Scholar]
  52. Yayon A., Ma Y. S., Safran M., Klagsbrun M., Halaban R. Suppression of autocrine cell proliferation and tumorigenesis of human melanoma cells and fibroblast growth factor transformed fibroblasts by a kinase-deficient FGF receptor 1: evidence for the involvement of Src-family kinases. Oncogene. 1997 Jun 26;14(25):2999–3009. doi: 10.1038/sj.onc.1201159. [DOI] [PubMed] [Google Scholar]
  53. Zhan X., Plourde C., Hu X., Friesel R., Maciag T. Association of fibroblast growth factor receptor-1 with c-Src correlates with association between c-Src and cortactin. J Biol Chem. 1994 Aug 12;269(32):20221–20224. [PubMed] [Google Scholar]
  54. Zhou M., Sutliff R. L., Paul R. J., Lorenz J. N., Hoying J. B., Haudenschild C. C., Yin M., Coffin J. D., Kong L., Kranias E. G. Fibroblast growth factor 2 control of vascular tone. Nat Med. 1998 Feb;4(2):201–207. doi: 10.1038/nm0298-201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Zúiga Mejía Borja A., Murphy C., Zeller R. AltFGF-2, a novel ER-associated FGF-2 protein isoform: its embryonic distribution and functional analysis during neural tube development. Dev Biol. 1996 Dec 15;180(2):680–692. doi: 10.1006/dbio.1996.0337. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES