Abstract
The molecular basis for substrate translocation in the Na+/Cl--dependent neurotransmitter transporters remains elusive. Here we report novel insight into the translocation mechanism by delineation of an endogenous Zn2+-binding site in the human dopamine transporter (hDAT). In micromolar concentrations, Zn2+ was found to act as a potent, non-competitive blocker of dopamine uptake in COS cells expressing hDAT. In contrast, binding of the cocaine analogue, WIN 35,428, was markedly potentiated by Zn2+. Surprisingly, these effects were not observed in the closely related human norepinephrine transporter (hNET). A single non-conserved histidine residue (His193) in the large second extracellular loop (ECL2) of hDAT was discovered to be responsible for this difference. Thus, Zn2+ modulation could be conveyed to hNET by mutational transfer of only this residue. His375 conserved between hDAT and hNET, present in the fourth extracellular loop (ECL4) at the top of transmembrane segment VII, was identified as a second major coordinate for Zn2+ binding. These data provide evidence for spatial proximity between His193 and His375 in hDAT, representing the first experimentally demonstrated proximity relationship in an Na+/Cl--dependent transporter. Since Zn2+ did not prevent dopamine binding, but inhibited dopamine translocation, our data suggest that by constraining movements of ECL2 and ECL4, Zn2+ can restrict a conformational change critical for the transport process.
Full Text
The Full Text of this article is available as a PDF (380.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amara S. G., Kuhar M. J. Neurotransmitter transporters: recent progress. Annu Rev Neurosci. 1993;16:73–93. doi: 10.1146/annurev.ne.16.030193.000445. [DOI] [PubMed] [Google Scholar]
- Assaf S. Y., Chung S. H. Release of endogenous Zn2+ from brain tissue during activity. Nature. 1984 Apr 19;308(5961):734–736. doi: 10.1038/308734a0. [DOI] [PubMed] [Google Scholar]
- Barker E. L., Blakely R. D. Identification of a single amino acid, phenylalanine 586, that is responsible for high affinity interactions of tricyclic antidepressants with the human serotonin transporter. Mol Pharmacol. 1996 Oct;50(4):957–965. [PubMed] [Google Scholar]
- Barker E. L., Kimmel H. L., Blakely R. D. Chimeric human and rat serotonin transporters reveal domains involved in recognition of transporter ligands. Mol Pharmacol. 1994 Nov;46(5):799–807. [PubMed] [Google Scholar]
- Bismuth Y., Kavanaugh M. P., Kanner B. I. Tyrosine 140 of the gamma-aminobutyric acid transporter GAT-1 plays a critical role in neurotransmitter recognition. J Biol Chem. 1997 Jun 27;272(26):16096–16102. doi: 10.1074/jbc.272.26.16096. [DOI] [PubMed] [Google Scholar]
- Bloomenthal A. B., Goldwater E., Pritchett D. B., Harrison N. L. Biphasic modulation of the strychnine-sensitive glycine receptor by Zn2+. Mol Pharmacol. 1994 Dec;46(6):1156–1159. [PubMed] [Google Scholar]
- Bonnet J. J., Benmansour S., Amejdki-Chab N., Costentin J. Effect of CH3HgCl and several transition metals on the dopamine neuronal carrier; peculiar behaviour of Zn2+. Eur J Pharmacol. 1994 Jan 1;266(1):87–97. doi: 10.1016/0922-4106(94)90213-5. [DOI] [PubMed] [Google Scholar]
- Buck K. J., Amara S. G. Chimeric dopamine-norepinephrine transporters delineate structural domains influencing selectivity for catecholamines and 1-methyl-4-phenylpyridinium. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12584–12588. doi: 10.1073/pnas.91.26.12584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buck K. J., Amara S. G. Structural domains of catecholamine transporter chimeras involved in selective inhibition by antidepressants and psychomotor stimulants. Mol Pharmacol. 1995 Dec;48(6):1030–1037. [PubMed] [Google Scholar]
- Chen J. G., Liu-Chen S., Rudnick G. External cysteine residues in the serotonin transporter. Biochemistry. 1997 Feb 11;36(6):1479–1486. doi: 10.1021/bi962256g. [DOI] [PubMed] [Google Scholar]
- Chen J. G., Sachpatzidis A., Rudnick G. The third transmembrane domain of the serotonin transporter contains residues associated with substrate and cocaine binding. J Biol Chem. 1997 Nov 7;272(45):28321–28327. doi: 10.1074/jbc.272.45.28321. [DOI] [PubMed] [Google Scholar]
- Dexter D. T., Wells F. R., Lees A. J., Agid F., Agid Y., Jenner P., Marsden C. D. Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's disease. J Neurochem. 1989 Jun;52(6):1830–1836. doi: 10.1111/j.1471-4159.1989.tb07264.x. [DOI] [PubMed] [Google Scholar]
- Elling C. E., Nielsen S. M., Schwartz T. W. Conversion of antagonist-binding site to metal-ion site in the tachykinin NK-1 receptor. Nature. 1995 Mar 2;374(6517):74–77. doi: 10.1038/374074a0. [DOI] [PubMed] [Google Scholar]
- Elling C. E., Schwartz T. W. Connectivity and orientation of the seven helical bundle in the tachykinin NK-1 receptor probed by zinc site engineering. EMBO J. 1996 Nov 15;15(22):6213–6219. [PMC free article] [PubMed] [Google Scholar]
- Frederickson C. J. Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol. 1989;31:145–238. doi: 10.1016/s0074-7742(08)60279-2. [DOI] [PubMed] [Google Scholar]
- Gether U., Marray T., Schwartz T. W., Johansen T. E. Stable expression of high affinity NK1 (substance P) and NK2 (neurokinin A) receptors but low affinity NK3 (neurokinin B) receptors in transfected CHO cells. FEBS Lett. 1992 Jan 27;296(3):241–244. doi: 10.1016/0014-5793(92)80295-r. [DOI] [PubMed] [Google Scholar]
- Giros B., Caron M. G. Molecular characterization of the dopamine transporter. Trends Pharmacol Sci. 1993 Feb;14(2):43–49. doi: 10.1016/0165-6147(93)90029-j. [DOI] [PubMed] [Google Scholar]
- Giros B., Jaber M., Jones S. R., Wightman R. M., Caron M. G. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature. 1996 Feb 15;379(6566):606–612. doi: 10.1038/379606a0. [DOI] [PubMed] [Google Scholar]
- Giros B., Wang Y. M., Suter S., McLeskey S. B., Pifl C., Caron M. G. Delineation of discrete domains for substrate, cocaine, and tricyclic antidepressant interactions using chimeric dopamine-norepinephrine transporters. J Biol Chem. 1994 Jun 10;269(23):15985–15988. [PubMed] [Google Scholar]
- Giros B., el Mestikawy S., Godinot N., Zheng K., Han H., Yang-Feng T., Caron M. G. Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter. Mol Pharmacol. 1992 Sep;42(3):383–390. [PubMed] [Google Scholar]
- He M. M., Voss J., Hubbell W. L., Kaback H. R. Use of designed metal-binding sites to study helix proximity in the lactose permease of Escherichia coli. 2. Proximity of helix IX (Arg302) with helix X (His322 and Glu325). Biochemistry. 1995 Dec 5;34(48):15667–15670. doi: 10.1021/bi00048a010. [DOI] [PubMed] [Google Scholar]
- Hollmann M., Boulter J., Maron C., Beasley L., Sullivan J., Pecht G., Heinemann S. Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron. 1993 May;10(5):943–954. doi: 10.1016/0896-6273(93)90209-a. [DOI] [PubMed] [Google Scholar]
- Horenstein J., Akabas M. H. Location of a high affinity Zn2+ binding site in the channel of alpha1beta1 gamma-aminobutyric acidA receptors. Mol Pharmacol. 1998 May;53(5):870–877. [PubMed] [Google Scholar]
- Horn A. S. Dopamine uptake: a review of progress in the last decade. Prog Neurobiol. 1990;34(5):387–400. doi: 10.1016/0301-0082(90)90033-d. [DOI] [PubMed] [Google Scholar]
- Huang E. P. Metal ions and synaptic transmission: think zinc. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13386–13387. doi: 10.1073/pnas.94.25.13386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johansen T. E., Schøller M. S., Tolstoy S., Schwartz T. W. Biosynthesis of peptide precursors and protease inhibitors using new constitutive and inducible eukaryotic expression vectors. FEBS Lett. 1990 Jul 16;267(2):289–294. doi: 10.1016/0014-5793(90)80947-h. [DOI] [PubMed] [Google Scholar]
- Kitayama S., Shimada S., Xu H., Markham L., Donovan D. M., Uhl G. R. Dopamine transporter site-directed mutations differentially alter substrate transport and cocaine binding. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7782–7785. doi: 10.1073/pnas.89.16.7782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laube B., Kuhse J., Rundström N., Kirsch J., Schmieden V., Betz H. Modulation by zinc ions of native rat and recombinant human inhibitory glycine receptors. J Physiol. 1995 Mar 15;483(Pt 3):613–619. doi: 10.1113/jphysiol.1995.sp020610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmiter R. D., Cole T. B., Quaife C. J., Findley S. D. ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14934–14939. doi: 10.1073/pnas.93.25.14934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pantanowitz S., Bendahan A., Kanner B. I. Only one of the charged amino acids located in the transmembrane alpha-helices of the gamma-aminobutyric acid transporter (subtype A) is essential for its activity. J Biol Chem. 1993 Feb 15;268(5):3222–3225. [PubMed] [Google Scholar]
- Peters S., Koh J., Choi D. W. Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons. Science. 1987 May 1;236(4801):589–593. doi: 10.1126/science.2883728. [DOI] [PubMed] [Google Scholar]
- Pifl C., Giros B., Caron M. G. Dopamine transporter expression confers cytotoxicity to low doses of the parkinsonism-inducing neurotoxin 1-methyl-4-phenylpyridinium. J Neurosci. 1993 Oct;13(10):4246–4253. doi: 10.1523/JNEUROSCI.13-10-04246.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richfield E. K. Zinc modulation of drug binding, cocaine affinity states, and dopamine uptake on the dopamine uptake complex. Mol Pharmacol. 1993 Jan;43(1):100–108. [PubMed] [Google Scholar]
- Schwabe J. W., Klug A. Zinc mining for protein domains. Nat Struct Biol. 1994 Jun;1(6):345–349. doi: 10.1038/nsb0694-345. [DOI] [PubMed] [Google Scholar]
- Sheikh S. P., Zvyaga T. A., Lichtarge O., Sakmar T. P., Bourne H. R. Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F. Nature. 1996 Sep 26;383(6598):347–350. doi: 10.1038/383347a0. [DOI] [PubMed] [Google Scholar]
- Stephan M. M., Chen M. A., Penado K. M., Rudnick G. An extracellular loop region of the serotonin transporter may be involved in the translocation mechanism. Biochemistry. 1997 Feb 11;36(6):1322–1328. doi: 10.1021/bi962150l. [DOI] [PubMed] [Google Scholar]
- Vallee B. L., Falchuk K. H. The biochemical basis of zinc physiology. Physiol Rev. 1993 Jan;73(1):79–118. doi: 10.1152/physrev.1993.73.1.79. [DOI] [PubMed] [Google Scholar]
- Wang J. B., Moriwaki A., Uhl G. R. Dopamine transporter cysteine mutants: second extracellular loop cysteines are required for transporter expression. J Neurochem. 1995 Mar;64(3):1416–1419. doi: 10.1046/j.1471-4159.1995.64031416.x. [DOI] [PubMed] [Google Scholar]
- Wang T. L., Hackam A., Guggino W. B., Cutting G. R. A single histidine residue is essential for zinc inhibition of GABA rho 1 receptors. J Neurosci. 1995 Nov;15(11):7684–7691. doi: 10.1523/JNEUROSCI.15-11-07684.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wenzel H. J., Cole T. B., Born D. E., Schwartzkroin P. A., Palmiter R. D. Ultrastructural localization of zinc transporter-3 (ZnT-3) to synaptic vesicle membranes within mossy fiber boutons in the hippocampus of mouse and monkey. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12676–12681. doi: 10.1073/pnas.94.23.12676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Westbrook G. L., Mayer M. L. Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature. 1987 Aug 13;328(6131):640–643. doi: 10.1038/328640a0. [DOI] [PubMed] [Google Scholar]