Abstract
Using the patch-clamp technique, we studied the role of protein phosphorylation and dephosphorylation on the exocytotic fusion of secretory granules with the plasma membrane in horse eosinophils. Phorbol 12-myristate 13-acetate (PMA) had no effect on the amplitude and dynamics of degranulation, indicating that the formation of fusion pores is insensitive to activation of protein kinase C (PKC). Fusion pore expansion, however, was accelerated approximately 2-fold by PMA, and this effect was abolished by staurosporine. Elevating intracellular Ca2+ to 1.5 microM also resulted in a 2-fold acceleration of pore expansion; this effect was not prevented by staurosporine, indicating that intracellular Ca2+ and activation of PKC accelerate fusion pore expansion via distinct mechanisms. However, fusion pores can expand fully even when PKC is inhibited. In contrast, the phosphatase inhibitor alpha-naphthylphosphate inhibits exocytotic fusion and slows fusion pore expansion. These results demonstrate that, subsequent to its formation, fusion pore expansion is under control of proteins subject to functional changes based on their phosphorylation states.
Full Text
The Full Text of this article is available as a PDF (261.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ammälä C., Eliasson L., Bokvist K., Berggren P. O., Honkanen R. E., Sjöholm A., Rorsman P. Activation of protein kinases and inhibition of protein phosphatases play a central role in the regulation of exocytosis in mouse pancreatic beta cells. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4343–4347. doi: 10.1073/pnas.91.10.4343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breckenridge L. J., Almers W. Currents through the fusion pore that forms during exocytosis of a secretory vesicle. 1987 Aug 27-Sep 2Nature. 328(6133):814–817. doi: 10.1038/328814a0. [DOI] [PubMed] [Google Scholar]
- Brewer C. B., Roth M. G. Polarized exocytosis in MDCK cells is regulated by phosphorylation. J Cell Sci. 1995 Feb;108(Pt 2):789–796. doi: 10.1242/jcs.108.2.789. [DOI] [PubMed] [Google Scholar]
- Brooks S. P., Storey K. B. Bound and determined: a computer program for making buffers of defined ion concentrations. Anal Biochem. 1992 Feb 14;201(1):119–126. doi: 10.1016/0003-2697(92)90183-8. [DOI] [PubMed] [Google Scholar]
- Brose N., Hofmann K., Hata Y., Südhof T. C. Mammalian homologues of Caenorhabditis elegans unc-13 gene define novel family of C2-domain proteins. J Biol Chem. 1995 Oct 20;270(42):25273–25280. doi: 10.1074/jbc.270.42.25273. [DOI] [PubMed] [Google Scholar]
- Budworth J., Gescher A. Differential inhibition of cytosolic and membrane-derived protein kinase C activity by staurosporine and other kinase inhibitors. FEBS Lett. 1995 Apr 3;362(2):139–142. doi: 10.1016/0014-5793(95)00227-z. [DOI] [PubMed] [Google Scholar]
- Churcher Y., Gomperts B. D. ATP-dependent and ATP-independent pathways of exocytosis revealed by interchanging glutamate and chloride as the major anion in permeabilized mast cells. Cell Regul. 1990 Mar;1(4):337–346. doi: 10.1091/mbc.1.4.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coorssen J. R., Davidson M. M., Haslam R. J. Factors affecting dense and alpha-granule secretion from electropermeabilized human platelets: Ca(2+)-independent actions of phorbol ester and GTP gamma S. Cell Regul. 1990 Dec;1(13):1027–1041. doi: 10.1091/mbc.1.13.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coorssen J. R., Haslam R. J. GTP gamma S and phorbol ester act synergistically to stimulate both Ca(2+)-independent secretion and phospholipase D activity in permeabilized human platelets. Inhibition by BAPTA and analogues. FEBS Lett. 1993 Jan 25;316(2):170–174. doi: 10.1016/0014-5793(93)81209-i. [DOI] [PubMed] [Google Scholar]
- Coorssen J. R. Phospholipase activation and secretion: evidence that PLA2, PLC, and PLD are not essential to exocytosis. Am J Physiol. 1996 Apr;270(4 Pt 1):C1153–C1163. doi: 10.1152/ajpcell.1996.270.4.C1153. [DOI] [PubMed] [Google Scholar]
- Coorssen J. R., Schmitt H., Almers W. Ca2+ triggers massive exocytosis in Chinese hamster ovary cells. EMBO J. 1996 Aug 1;15(15):3787–3791. [PMC free article] [PubMed] [Google Scholar]
- Feigenson G. W. On the nature of calcium ion binding between phosphatidylserine lamellae. Biochemistry. 1986 Sep 23;25(19):5819–5825. doi: 10.1021/bi00367a071. [DOI] [PubMed] [Google Scholar]
- Fernandez J. M., Neher E., Gomperts B. D. Capacitance measurements reveal stepwise fusion events in degranulating mast cells. 1984 Nov 29-Dec 5Nature. 312(5993):453–455. doi: 10.1038/312453a0. [DOI] [PubMed] [Google Scholar]
- Fernández-Chacón R., Alvarez de Toledo G. Cytosolic calcium facilitates release of secretory products after exocytotic vesicle fusion. FEBS Lett. 1995 Apr 24;363(3):221–225. doi: 10.1016/0014-5793(95)00319-5. [DOI] [PubMed] [Google Scholar]
- Fidler N., Fernandez J. M. Phase tracking: an improved phase detection technique for cell membrane capacitance measurements. Biophys J. 1989 Dec;56(6):1153–1162. doi: 10.1016/S0006-3495(89)82762-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillis K. D., Mossner R., Neher E. Protein kinase C enhances exocytosis from chromaffin cells by increasing the size of the readily releasable pool of secretory granules. Neuron. 1996 Jun;16(6):1209–1220. doi: 10.1016/s0896-6273(00)80147-6. [DOI] [PubMed] [Google Scholar]
- Gomperts B. D. GE: a GTP-binding protein mediating exocytosis. Annu Rev Physiol. 1990;52:591–606. doi: 10.1146/annurev.ph.52.030190.003111. [DOI] [PubMed] [Google Scholar]
- Hartmann J., Lindau M. A novel Ca(2+)-dependent step in exocytosis subsequent to vesicle fusion. FEBS Lett. 1995 Apr 24;363(3):217–220. doi: 10.1016/0014-5793(95)00318-4. [DOI] [PubMed] [Google Scholar]
- Hay J. C., Fisette P. L., Jenkins G. H., Fukami K., Takenawa T., Anderson R. A., Martin T. F. ATP-dependent inositide phosphorylation required for Ca(2+)-activated secretion. Nature. 1995 Mar 9;374(6518):173–177. doi: 10.1038/374173a0. [DOI] [PubMed] [Google Scholar]
- Henkel A. W., Betz W. J. Staurosporine blocks evoked release of FM1-43 but not acetylcholine from frog motor nerve terminals. J Neurosci. 1995 Dec;15(12):8246–8258. doi: 10.1523/JNEUROSCI.15-12-08246.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hide I., Bennett J. P., Pizzey A., Boonen G., Bar-Sagi D., Gomperts B. D., Tatham P. E. Degranulation of individual mast cells in response to Ca2+ and guanine nucleotides: an all-or-none event. J Cell Biol. 1993 Nov;123(3):585–593. doi: 10.1083/jcb.123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howell T. W., Kramer I. M., Gomperts B. D. Protein phosphorylation and the dependence on Ca2+ and GTP-gamma-S for exocytosis from permeabilised mast cells. Cell Signal. 1989;1(2):157–163. doi: 10.1016/0898-6568(89)90005-3. [DOI] [PubMed] [Google Scholar]
- Koopmann W. R., Jr, Jackson R. C. Calcium- and guanine-nucleotide-dependent exocytosis in permeabilized rat mast cells. Modulation by protein kinase C. Biochem J. 1990 Jan 15;265(2):365–373. doi: 10.1042/bj2650365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindau M., Almers W. Structure and function of fusion pores in exocytosis and ectoplasmic membrane fusion. Curr Opin Cell Biol. 1995 Aug;7(4):509–517. doi: 10.1016/0955-0674(95)80007-7. [DOI] [PubMed] [Google Scholar]
- Lindau M., Gomperts B. D. Techniques and concepts in exocytosis: focus on mast cells. Biochim Biophys Acta. 1991 Dec 12;1071(4):429–471. doi: 10.1016/0304-4157(91)90006-i. [DOI] [PubMed] [Google Scholar]
- Lindau M., Hartmann J., Scepek S. Three distinct fusion processes during eosinophil degranulation. Ann N Y Acad Sci. 1994 Mar 9;710:232–247. doi: 10.1111/j.1749-6632.1994.tb26631.x. [DOI] [PubMed] [Google Scholar]
- Lindau M., Neher E. Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pflugers Arch. 1988 Feb;411(2):137–146. doi: 10.1007/BF00582306. [DOI] [PubMed] [Google Scholar]
- Lindau M. Time-resolved capacitance measurements: monitoring exocytosis in single cells. Q Rev Biophys. 1991 Feb;24(1):75–101. doi: 10.1017/s0033583500003279. [DOI] [PubMed] [Google Scholar]
- Monck J. R., Alvarez de Toledo G., Fernandez J. M. Tension in secretory granule membranes causes extensive membrane transfer through the exocytotic fusion pore. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7804–7808. doi: 10.1073/pnas.87.20.7804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murthy V. N., Stevens C. F. Synaptic vesicles retain their identity through the endocytic cycle. Nature. 1998 Apr 2;392(6675):497–501. doi: 10.1038/33152. [DOI] [PubMed] [Google Scholar]
- Nanavati C., Markin V. S., Oberhauser A. F., Fernandez J. M. The exocytotic fusion pore modeled as a lipidic pore. Biophys J. 1992 Oct;63(4):1118–1132. doi: 10.1016/S0006-3495(92)81679-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neher E., Marty A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6712–6716. doi: 10.1073/pnas.79.21.6712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niessen H. W., Verhoeven A. J. Role of protein phosphorylation in the degranulation of electropermeabilized human neutrophils. Biochim Biophys Acta. 1994 Sep 8;1223(2):267–273. doi: 10.1016/0167-4889(94)90236-4. [DOI] [PubMed] [Google Scholar]
- Nüsse O., Lindau M., Cromwell O., Kay A. B., Gomperts B. D. Intracellular application of guanosine-5'-O-(3-thiotriphosphate) induces exocytotic granule fusion in guinea pig eosinophils. J Exp Med. 1990 Mar 1;171(3):775–786. doi: 10.1084/jem.171.3.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nüsse O., Lindau M. The dynamics of exocytosis in human neutrophils. J Cell Biol. 1988 Dec;107(6 Pt 1):2117–2123. doi: 10.1083/jcb.107.6.2117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Santini F., Beaven M. A. Tyrosine phosphorylation of a mitogen-activated protein kinase-like protein occurs at a late step in exocytosis. Studies with tyrosine phosphatase inhibitors and various secretagogues in rat RBL-2H3 cells. J Biol Chem. 1993 Oct 25;268(30):22716–22722. [PubMed] [Google Scholar]
- Scepek S., Lindau M. Focal exocytosis by eosinophils--compound exocytosis and cumulative fusion. EMBO J. 1993 May;12(5):1811–1817. doi: 10.1002/j.1460-2075.1993.tb05829.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith C., Neher E. Multiple forms of endocytosis in bovine adrenal chromaffin cells. J Cell Biol. 1997 Nov 17;139(4):885–894. doi: 10.1083/jcb.139.4.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spruce A. E., Breckenridge L. J., Lee A. K., Almers W. Properties of the fusion pore that forms during exocytosis of a mast cell secretory vesicle. Neuron. 1990 May;4(5):643–654. doi: 10.1016/0896-6273(90)90192-i. [DOI] [PubMed] [Google Scholar]
- Terbush D. R., Holz R. W. Activation of protein kinase C is not required for exocytosis from bovine adrenal chromaffin cells. The effects of protein kinase C(19-31), Ca/CaM kinase II(291-317), and staurosporine. J Biol Chem. 1990 Dec 5;265(34):21179–21184. [PubMed] [Google Scholar]
- Wiedemann C., Schäfer T., Burger M. M. Chromaffin granule-associated phosphatidylinositol 4-kinase activity is required for stimulated secretion. EMBO J. 1996 May 1;15(9):2094–2101. [PMC free article] [PubMed] [Google Scholar]
- Yamane H. K., Fung B. K. Covalent modifications of G-proteins. Annu Rev Pharmacol Toxicol. 1993;33:201–241. doi: 10.1146/annurev.pa.33.040193.001221. [DOI] [PubMed] [Google Scholar]
- Zieseniss E., Plattner H. Synchronous exocytosis in Paramecium cells involves very rapid (less than or equal to 1 s), reversible dephosphorylation of a 65-kD phosphoprotein in exocytosis-competent strains. J Cell Biol. 1985 Dec;101(6):2028–2035. doi: 10.1083/jcb.101.6.2028. [DOI] [PMC free article] [PubMed] [Google Scholar]