Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Aug 3;17(15):4442–4455. doi: 10.1093/emboj/17.15.4442

TLS/FUS, a pro-oncogene involved in multiple chromosomal translocations, is a novel regulator of BCR/ABL-mediated leukemogenesis.

D Perrotti 1, S Bonatti 1, R Trotta 1, R Martinez 1, T Skorski 1, P Salomoni 1, E Grassilli 1, R V Lozzo 1, D R Cooper 1, B Calabretta 1
PMCID: PMC1170776  PMID: 9687511

Abstract

The leukemogenic potential of BCR/ABL oncoproteins depends on their tyrosine kinase activity and involves the activation of several downstream effectors, some of which are essential for cell transformation. Using electrophoretic mobility shift assays and Southwestern blot analyses with a double-stranded oligonucleotide containing a zinc finger consensus sequence, we identified a 68 kDa DNA-binding protein specifically induced by BCR/ABL. The peptide sequence of the affinity-purified protein was identical to that of the RNA-binding protein FUS (also called TLS). Binding activity of FUS required a functional BCR/ABL tyrosine kinase necessary to induce PKCbetaII-dependent FUS phosphorylation. Moreover, suppression of PKCbetaII activity in BCR/ABL-expressing cells by treatment with the PKCbetaII inhibitor CGP53353, or by expression of a dominant-negative PKCbetaII, markedly impaired the ability of FUS to bind DNA. Suppression of FUS expression in myeloid precursor 32Dcl3 cells transfected with a FUS antisense construct was associated with upregulation of the granulocyte-colony stimulating factor receptor (G-CSFR) and downregulation of interleukin-3 receptor (IL-3R) beta-chain expression, and accelerated G-CSF-stimulated differentiation. Downregulation of FUS expression in BCR/ABL-expressing 32Dcl3 cells was associated with suppression of growth factor-independent colony formation, restoration of G-CSF-induced granulocytic differentiation and reduced tumorigenic potential in vivo. Together, these results suggest that FUS might function as a regulator of BCR/ABL leukemogenesis, promoting growth factor independence and preventing differentiation via modulation of cytokine receptor expression.

Full Text

The Full Text of this article is available as a PDF (686.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aman P., Panagopoulos I., Lassen C., Fioretos T., Mencinger M., Toresson H., Höglund M., Forster A., Rabbitts T. H., Ron D. Expression patterns of the human sarcoma-associated genes FUS and EWS and the genomic structure of FUS. Genomics. 1996 Oct 1;37(1):1–8. doi: 10.1006/geno.1996.0513. [DOI] [PubMed] [Google Scholar]
  2. Askew D. S., Ashmun R. A., Simmons B. C., Cleveland J. L. Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene. 1991 Oct;6(10):1915–1922. [PubMed] [Google Scholar]
  3. Bellon T., Perrotti D., Calabretta B. Granulocytic differentiation of normal hematopoietic precursor cells induced by transcription factor PU.1 correlates with negative regulation of the c-myb promoter. Blood. 1997 Sep 1;90(5):1828–1839. [PubMed] [Google Scholar]
  4. Bertolotti A., Lutz Y., Heard D. J., Chambon P., Tora L. hTAF(II)68, a novel RNA/ssDNA-binding protein with homology to the pro-oncoproteins TLS/FUS and EWS is associated with both TFIID and RNA polymerase II. EMBO J. 1996 Sep 16;15(18):5022–5031. [PMC free article] [PubMed] [Google Scholar]
  5. Calvio C., Neubauer G., Mann M., Lamond A. I. Identification of hnRNP P2 as TLS/FUS using electrospray mass spectrometry. RNA. 1995 Sep;1(7):724–733. [PMC free article] [PubMed] [Google Scholar]
  6. Chalfant C. E., Ohno S., Konno Y., Fisher A. A., Bisnauth L. D., Watson J. E., Cooper D. R. A carboxy-terminal deletion mutant of protein kinase C beta II inhibits insulin-stimulated 2-deoxyglucose uptake in L6 rat skeletal muscle cells. Mol Endocrinol. 1996 Oct;10(10):1273–1281. doi: 10.1210/mend.10.10.9121494. [DOI] [PubMed] [Google Scholar]
  7. Chen P., Xie H., Wells A. Mitogenic signaling from the egf receptor is attenuated by a phospholipase C-gamma/protein kinase C feedback mechanism. Mol Biol Cell. 1996 Jun;7(6):871–881. doi: 10.1091/mbc.7.6.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cortez D., Kadlec L., Pendergast A. M. Structural and signaling requirements for BCR-ABL-mediated transformation and inhibition of apoptosis. Mol Cell Biol. 1995 Oct;15(10):5531–5541. doi: 10.1128/mcb.15.10.5531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Courey A. J., Tjian R. Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell. 1988 Dec 2;55(5):887–898. doi: 10.1016/0092-8674(88)90144-4. [DOI] [PubMed] [Google Scholar]
  10. Crozat A., Aman P., Mandahl N., Ron D. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature. 1993 Jun 17;363(6430):640–644. doi: 10.1038/363640a0. [DOI] [PubMed] [Google Scholar]
  11. Daley G. Q., Van Etten R. A., Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science. 1990 Feb 16;247(4944):824–830. doi: 10.1126/science.2406902. [DOI] [PubMed] [Google Scholar]
  12. Dekker L. V., Parker P. J. Protein kinase C--a question of specificity. Trends Biochem Sci. 1994 Feb;19(2):73–77. doi: 10.1016/0968-0004(94)90038-8. [DOI] [PubMed] [Google Scholar]
  13. Downward J. Signal transduction. Regulating S6 kinase. Nature. 1994 Sep 29;371(6496):378–379. doi: 10.1038/371378a0. [DOI] [PubMed] [Google Scholar]
  14. Dudley D. T., Pang L., Decker S. J., Bridges A. J., Saltiel A. R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7686–7689. doi: 10.1073/pnas.92.17.7686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Evans C. A., Lord J. M., Owen-Lynch P. J., Johnson G., Dive C., Whetton A. D. Suppression of apoptosis by v-ABL protein tyrosine kinase is associated with nuclear translocation and activation of protein kinase C in an interleukin-3-dependent haemopoietic cell line. J Cell Sci. 1995 Jul;108(Pt 7):2591–2598. doi: 10.1242/jcs.108.7.2591. [DOI] [PubMed] [Google Scholar]
  16. Friedman A. D. GADD153/CHOP, a DNA damage-inducible protein, reduced CAAT/enhancer binding protein activities and increased apoptosis in 32D c13 myeloid cells. Cancer Res. 1996 Jul 15;56(14):3250–3256. [PubMed] [Google Scholar]
  17. Fukunaga R., Ishizaka-Ikeda E., Seto Y., Nagata S. Expression cloning of a receptor for murine granulocyte colony-stimulating factor. Cell. 1990 Apr 20;61(2):341–350. doi: 10.1016/0092-8674(90)90814-u. [DOI] [PubMed] [Google Scholar]
  18. Fung P. A., Labrecque R., Pederson T. RNA-dependent phosphorylation of a nuclear RNA binding protein. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1064–1068. doi: 10.1073/pnas.94.4.1064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Goga A., McLaughlin J., Afar D. E., Saffran D. C., Witte O. N. Alternative signals to RAS for hematopoietic transformation by the BCR-ABL oncogene. Cell. 1995 Sep 22;82(6):981–988. doi: 10.1016/0092-8674(95)90277-5. [DOI] [PubMed] [Google Scholar]
  20. Gotoh A., Miyazawa K., Ohyashiki K., Toyama K. Potential molecules implicated in downstream signaling pathways of p185BCR-ABL in Ph+ ALL involve GTPase-activating protein, phospholipase C-gamma 1, and phosphatidylinositol 3'-kinase. Leukemia. 1994 Jan;8(1):115–120. [PubMed] [Google Scholar]
  21. Görlach M., Burd C. G., Dreyfuss G. The determinants of RNA-binding specificity of the heterogeneous nuclear ribonucleoprotein C proteins. J Biol Chem. 1994 Sep 16;269(37):23074–23078. [PubMed] [Google Scholar]
  22. Hackl W., Lührmann R. Molecular cloning and subcellular localisation of the snRNP-associated protein 69KD, a structural homologue of the proto-oncoproteins TLS and EWS with RNA and DNA-binding properties. J Mol Biol. 1996 Dec 20;264(5):843–851. doi: 10.1006/jmbi.1996.0681. [DOI] [PubMed] [Google Scholar]
  23. Heisterkamp N., Jenster G., ten Hoeve J., Zovich D., Pattengale P. K., Groffen J. Acute leukaemia in bcr/abl transgenic mice. Nature. 1990 Mar 15;344(6263):251–253. doi: 10.1038/344251a0. [DOI] [PubMed] [Google Scholar]
  24. Immanuel D., Zinszner H., Ron D. Association of SARFH (sarcoma-associated RNA-binding fly homolog) with regions of chromatin transcribed by RNA polymerase II. Mol Cell Biol. 1995 Aug;15(8):4562–4571. doi: 10.1128/mcb.15.8.4562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kadonaga J. T., Tjian R. Affinity purification of sequence-specific DNA binding proteins. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5889–5893. doi: 10.1073/pnas.83.16.5889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Karin M., Hunter T. Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr Biol. 1995 Jul 1;5(7):747–757. doi: 10.1016/s0960-9822(95)00151-5. [DOI] [PubMed] [Google Scholar]
  27. Kato J. Y., Sherr C. J. Inhibition of granulocyte differentiation by G1 cyclins D2 and D3 but not D1. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11513–11517. doi: 10.1073/pnas.90.24.11513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ladanyi M. The emerging molecular genetics of sarcoma translocations. Diagn Mol Pathol. 1995 Sep;4(3):162–173. doi: 10.1097/00019606-199509000-00003. [DOI] [PubMed] [Google Scholar]
  29. Lugo T. G., Pendergast A. M., Muller A. J., Witte O. N. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science. 1990 Mar 2;247(4946):1079–1082. doi: 10.1126/science.2408149. [DOI] [PubMed] [Google Scholar]
  30. Matulonis U., Salgia R., Okuda K., Druker B., Griffin J. D. Interleukin-3 and p210 BCR/ABL activate both unique and overlapping pathways of signal transduction in a factor-dependent myeloid cell line. Exp Hematol. 1993 Oct;21(11):1460–1466. [PubMed] [Google Scholar]
  31. Maxon M. E., Tjian R. Transcriptional activity of transcription factor IIE is dependent on zinc binding. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9529–9533. doi: 10.1073/pnas.91.20.9529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mayrand S. H., Dwen P., Pederson T. Serine/threonine phosphorylation regulates binding of C hnRNP proteins to pre-mRNA. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7764–7768. doi: 10.1073/pnas.90.16.7764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. McLaughlin J., Chianese E., Witte O. N. In vitro transformation of immature hematopoietic cells by the P210 BCR/ABL oncogene product of the Philadelphia chromosome. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6558–6562. doi: 10.1073/pnas.84.18.6558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Morishita K., Parganas E., Matsugi T., Ihle J. N. Expression of the Evi-1 zinc finger gene in 32Dc13 myeloid cells blocks granulocytic differentiation in response to granulocyte colony-stimulating factor. Mol Cell Biol. 1992 Jan;12(1):183–189. doi: 10.1128/mcb.12.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Morohoshi F., Arai K., Takahashi E. I., Tanigami A., Ohki M. Cloning and mapping of a human RBP56 gene encoding a putative RNA binding protein similar to FUS/TLS and EWS proteins. Genomics. 1996 Nov 15;38(1):51–57. doi: 10.1006/geno.1996.0591. [DOI] [PubMed] [Google Scholar]
  36. Panagopoulos I., Mandahl N., Mitelman F., Aman P. Two distinct FUS breakpoint clusters in myxoid liposarcoma and acute myeloid leukemia with the translocations t(12;16) and t(16;21). Oncogene. 1995 Sep 21;11(6):1133–1137. [PubMed] [Google Scholar]
  37. Pear W. S., Nolan G. P., Scott M. L., Baltimore D. Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8392–8396. doi: 10.1073/pnas.90.18.8392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Perrotti D., Bellón T., Trotta R., Martinez R., Calabretta B. A cell proliferation-dependent multiprotein complex NC-3A positively regulates the CD34 promoter via a TCATTT-containing element. Blood. 1996 Nov 1;88(9):3336–3348. [PubMed] [Google Scholar]
  39. Perrotti D., Melotti P., Skorski T., Casella I., Peschle C., Calabretta B. Overexpression of the zinc finger protein MZF1 inhibits hematopoietic development from embryonic stem cells: correlation with negative regulation of CD34 and c-myb promoter activity. Mol Cell Biol. 1995 Nov;15(11):6075–6087. doi: 10.1128/mcb.15.11.6075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Piñol-Roma S., Dreyfuss G. Cell cycle-regulated phosphorylation of the pre-mRNA-binding (heterogeneous nuclear ribonucleoprotein) C proteins. Mol Cell Biol. 1993 Sep;13(9):5762–5770. doi: 10.1128/mcb.13.9.5762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Powis G., Bonjouklian R., Berggren M. M., Gallegos A., Abraham R., Ashendel C., Zalkow L., Matter W. F., Dodge J., Grindey G. Wortmannin, a potent and selective inhibitor of phosphatidylinositol-3-kinase. Cancer Res. 1994 May 1;54(9):2419–2423. [PubMed] [Google Scholar]
  42. Prasad D. D., Ouchida M., Lee L., Rao V. N., Reddy E. S. TLS/FUS fusion domain of TLS/FUS-erg chimeric protein resulting from the t(16;21) chromosomal translocation in human myeloid leukemia functions as a transcriptional activation domain. Oncogene. 1994 Dec;9(12):3717–3729. [PubMed] [Google Scholar]
  43. Rabbitts T. H., Forster A., Larson R., Nathan P. Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat Genet. 1993 Jun;4(2):175–180. doi: 10.1038/ng0693-175. [DOI] [PubMed] [Google Scholar]
  44. Raitano A. B., Halpern J. R., Hambuch T. M., Sawyers C. L. The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11746–11750. doi: 10.1073/pnas.92.25.11746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Ron D. TLS-CHOP and the role of RNA-binding proteins in oncogenic transformation. Curr Top Microbiol Immunol. 1997;220:131–142. doi: 10.1007/978-3-642-60479-9_8. [DOI] [PubMed] [Google Scholar]
  46. Sawyers C. L., Callahan W., Witte O. N. Dominant negative MYC blocks transformation by ABL oncogenes. Cell. 1992 Sep 18;70(6):901–910. doi: 10.1016/0092-8674(92)90241-4. [DOI] [PubMed] [Google Scholar]
  47. Sawyers C. L., McLaughlin J., Witte O. N. Genetic requirement for Ras in the transformation of fibroblasts and hematopoietic cells by the Bcr-Abl oncogene. J Exp Med. 1995 Jan 1;181(1):307–313. doi: 10.1084/jem.181.1.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Shimizu K., Ichikawa H., Tojo A., Kaneko Y., Maseki N., Hayashi Y., Ohira M., Asano S., Ohki M. An ets-related gene, ERG, is rearranged in human myeloid leukemia with t(16;21) chromosomal translocation. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10280–10284. doi: 10.1073/pnas.90.21.10280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Skorski T., Bellacosa A., Nieborowska-Skorska M., Majewski M., Martinez R., Choi J. K., Trotta R., Wlodarski P., Perrotti D., Chan T. O. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J. 1997 Oct 15;16(20):6151–6161. doi: 10.1093/emboj/16.20.6151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Skorski T., Nieborowska-Skorska M., Szczylik C., Kanakaraj P., Perrotti D., Zon G., Gewirtz A., Perussia B., Calabretta B. C-RAF-1 serine/threonine kinase is required in BCR/ABL-dependent and normal hematopoiesis. Cancer Res. 1995 Jun 1;55(11):2275–2278. [PubMed] [Google Scholar]
  51. Steinman R. A., Tweardy D. J. Granulocyte colony-stimulating factor receptor mRNA upregulation is an immediate early marker of myeloid differentiation and exhibits dysfunctional regulation in leukemic cells. Blood. 1994 Jan 1;83(1):119–127. [PubMed] [Google Scholar]
  52. Tamaoki T. Use and specificity of staurosporine, UCN-01, and calphostin C as protein kinase inhibitors. Methods Enzymol. 1991;201:340–347. doi: 10.1016/0076-6879(91)01030-6. [DOI] [PubMed] [Google Scholar]
  53. Teale B., Singh S., Khanna K. K., Findik D., Lavin M. F. Purification and characterization of a DNA-binding protein activated by ionizing radiation. J Biol Chem. 1992 May 25;267(15):10295–10301. [PubMed] [Google Scholar]
  54. Tenen D. G., Hromas R., Licht J. D., Zhang D. E. Transcription factors, normal myeloid development, and leukemia. Blood. 1997 Jul 15;90(2):489–519. [PubMed] [Google Scholar]
  55. Tkatch L. S., Rubin K. A., Ziegler S. F., Tweardy D. J. Modulation of human G-CSF receptor mRNA and protein in normal and leukemic myeloid cells by G-CSF and retinoic acid. J Leukoc Biol. 1995 Jun;57(6):964–971. doi: 10.1002/jlb.57.6.964. [DOI] [PubMed] [Google Scholar]
  56. Waterhouse N., Kumar S., Song Q., Strike P., Sparrow L., Dreyfuss G., Alnemri E. S., Litwack G., Lavin M., Watters D. Heteronuclear ribonucleoproteins C1 and C2, components of the spliceosome, are specific targets of interleukin 1beta-converting enzyme-like proteases in apoptosis. J Biol Chem. 1996 Nov 15;271(46):29335–29341. doi: 10.1074/jbc.271.46.29335. [DOI] [PubMed] [Google Scholar]
  57. Yi H., Fujimura Y., Ouchida M., Prasad D. D., Rao V. N., Reddy E. S. Inhibition of apoptosis by normal and aberrant Fli-1 and erg proteins involved in human solid tumors and leukemias. Oncogene. 1997 Mar 20;14(11):1259–1268. doi: 10.1038/sj.onc.1201099. [DOI] [PubMed] [Google Scholar]
  58. Zinszner H., Albalat R., Ron D. A novel effector domain from the RNA-binding protein TLS or EWS is required for oncogenic transformation by CHOP. Genes Dev. 1994 Nov 1;8(21):2513–2526. doi: 10.1101/gad.8.21.2513. [DOI] [PubMed] [Google Scholar]
  59. Zinszner H., Immanuel D., Yin Y., Liang F. X., Ron D. A topogenic role for the oncogenic N-terminus of TLS: nucleolar localization when transcription is inhibited. Oncogene. 1997 Jan 30;14(4):451–461. doi: 10.1038/sj.onc.1200854. [DOI] [PubMed] [Google Scholar]
  60. Zinszner H., Sok J., Immanuel D., Yin Y., Ron D. TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling. J Cell Sci. 1997 Aug;110(Pt 15):1741–1750. doi: 10.1242/jcs.110.15.1741. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES