Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Aug 3;17(15):4527–4534. doi: 10.1093/emboj/17.15.4527

Endonuclease VII has two DNA-binding sites each composed from one N- and one C-terminus provided by different subunits of the protein dimer.

R P Birkenbihl 1, B Kemper 1
PMCID: PMC1170783  PMID: 9687518

Abstract

Endonuclease VII (endo VII) is a Holliday structure-resolving enzyme of bacteriophage T4. Its activity depends on dimerization, DNA binding and hydrolysis of two phosphodiester bonds flanking the Holliday junction. We analysed the DNA-binding activity of truncated monomeric and covalently linked dimeric endo VII proteins. We show that both ends of endo VII are involved in DNA binding. In particular, the C-terminus of one subunit interacts with the N-terminus of the other subunit, constituting one DNA-binding site; the other two termini form the second binding site of the dimer. One binding site is sufficient to bind cruciform DNA. The concerted mechanism involving termini from different subunits ensures that only dimers bind to Holliday structures, thus providing two catalytic centres which introduce two cleavages in opposite strands. This is a precondition for precise resolution of Holliday structures.

Full Text

The Full Text of this article is available as a PDF (323.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ariyoshi M., Vassylyev D. G., Iwasaki H., Nakamura H., Shinagawa H., Morikawa K. Atomic structure of the RuvC resolvase: a holliday junction-specific endonuclease from E. coli. Cell. 1994 Sep 23;78(6):1063–1072. doi: 10.1016/0092-8674(94)90280-1. [DOI] [PubMed] [Google Scholar]
  2. Barth K. A., Powell D., Trupin M., Mosig G. Regulation of two nested proteins from gene 49 (recombination endonuclease VII) and of a lambda RexA-like protein of bacteriophage T4. Genetics. 1988 Oct;120(2):329–343. doi: 10.1093/genetics/120.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Birkenbihl R. P., Kemper B. Localization and characterization of the dimerization domain of holliday structure resolving endonuclease VII of phage T4. J Mol Biol. 1998 Jul 3;280(1):73–83. doi: 10.1006/jmbi.1998.1851. [DOI] [PubMed] [Google Scholar]
  4. Christoph A., v Heesberg G., Kemper B. Epitope mapping of T4 endonuclease VII with monoclonal antibodies reveals importance of both ends of the protein for target binding. J Mol Biol. 1998 Apr 3;277(3):529–540. doi: 10.1006/jmbi.1998.1628. [DOI] [PubMed] [Google Scholar]
  5. Dunderdale H. J., Sharples G. J., Lloyd R. G., West S. C. Cloning, overexpression, purification, and characterization of the Escherichia coli RuvC Holliday junction resolvase. J Biol Chem. 1994 Feb 18;269(7):5187–5194. [PubMed] [Google Scholar]
  6. Giraud-Panis M. J., Duckett D. R., Lilley D. M. The modular character of a DNA junction-resolving enzyme: a zinc-binding motif in bacteriophage T4 endonuclease VII. J Mol Biol. 1995 Oct 6;252(5):596–610. doi: 10.1006/jmbi.1995.0523. [DOI] [PubMed] [Google Scholar]
  7. Giraud-Panis M. J., Lilley D. M. Near-simultaneous DNA cleavage by the subunits of the junction-resolving enzyme T4 endonuclease VII. EMBO J. 1997 May 1;16(9):2528–2534. doi: 10.1093/emboj/16.9.2528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Giraud-Panis M. J., Lilley D. M. T4 endonuclease VII. Importance of a histidine-aspartate cluster within the zinc-binding domain. J Biol Chem. 1996 Dec 20;271(51):33148–33155. doi: 10.1074/jbc.271.51.33148. [DOI] [PubMed] [Google Scholar]
  9. Golz S., Birkenbihl R. P., Kemper B. Improved large-scale preparation of phage T4 endonuclease VII overexpressed in E. coli. DNA Res. 1995 Dec 31;2(6):277–284. doi: 10.1093/dnares/2.6.277. [DOI] [PubMed] [Google Scholar]
  10. Golz S., Christoph A., Birkenkamp-Demtröder K., Kemper B. Identification of amino acids of endonuclease VII essential for binding and cleavage of cruciform DNA. Eur J Biochem. 1997 May 1;245(3):573–580. doi: 10.1111/j.1432-1033.1997.00573.x. [DOI] [PubMed] [Google Scholar]
  11. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  12. Kemper B., Garabett M. Studies on T4-head maturation. 1. Purification and characterization of gene-49-controlled endonuclease. Eur J Biochem. 1981 Mar 16;115(1):123–131. [PubMed] [Google Scholar]
  13. Kosak H. G., Kemper B. W. Large-scale preparation of T4 endonuclease VII from over-expressing bacteria. Eur J Biochem. 1990 Dec 27;194(3):779–784. doi: 10.1111/j.1432-1033.1990.tb19469.x. [DOI] [PubMed] [Google Scholar]
  14. Kupfer C., Kemper B. Reactions of mitochondrial cruciform cutting endonuclease 1 (CCE1) of yeast Saccharomyces cerevisiae with branched DNAs in vitro. Eur J Biochem. 1996 May 15;238(1):77–87. doi: 10.1111/j.1432-1033.1996.0077q.x. [DOI] [PubMed] [Google Scholar]
  15. McClarin J. A., Frederick C. A., Wang B. C., Greene P., Boyer H. W., Grable J., Rosenberg J. M. Structure of the DNA-Eco RI endonuclease recognition complex at 3 A resolution. Science. 1986 Dec 19;234(4783):1526–1541. doi: 10.1126/science.3024321. [DOI] [PubMed] [Google Scholar]
  16. Mizuuchi K., Kemper B., Hays J., Weisberg R. A. T4 endonuclease VII cleaves holliday structures. Cell. 1982 Jun;29(2):357–365. doi: 10.1016/0092-8674(82)90152-0. [DOI] [PubMed] [Google Scholar]
  17. Pottmeyer S., Kemper B. T4 endonuclease VII resolves cruciform DNA with nick and counter-nick and its activity is directed by local nucleotide sequence. J Mol Biol. 1992 Feb 5;223(3):607–615. doi: 10.1016/0022-2836(92)90977-r. [DOI] [PubMed] [Google Scholar]
  18. Pöhler J. R., Giraud-Panis M. J., Lilley D. M. T4 endonuclease VII selects and alters the structure of the four-way DNA junction; binding of a resolution-defective mutant enzyme. J Mol Biol. 1996 Aug 2;260(5):678–696. doi: 10.1006/jmbi.1996.0430. [DOI] [PubMed] [Google Scholar]
  19. Rost B., Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 1994 May;19(1):55–72. doi: 10.1002/prot.340190108. [DOI] [PubMed] [Google Scholar]
  20. Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
  21. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  23. Tomaschewski J., Rüger W. Nucleotide sequence and primary structures of gene products coded for by the T4 genome between map positions 48.266 kb and 39.166 kb. Nucleic Acids Res. 1987 Apr 24;15(8):3632–3633. doi: 10.1093/nar/15.8.3632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. White M. F., Giraud-Panis M. J., Pöhler J. R., Lilley D. M. Recognition and manipulation of branched DNA structure by junction-resolving enzymes. J Mol Biol. 1997 Jun 27;269(5):647–664. doi: 10.1006/jmbi.1997.1097. [DOI] [PubMed] [Google Scholar]
  25. White M. F., Lilley D. M. The structure-selectivity and sequence-preference of the junction-resolving enzyme CCE1 of Saccharomyces cerevisiae. J Mol Biol. 1996 Mar 29;257(2):330–341. doi: 10.1006/jmbi.1996.0166. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES