Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Aug 17;17(16):4617–4625. doi: 10.1093/emboj/17.16.4617

Cellular uptake of saposin (SAP) precursor and lysosomal delivery by the low density lipoprotein receptor-related protein (LRP).

T Hiesberger 1, S Hüttler 1, A Rohlmann 1, W Schneider 1, K Sandhoff 1, J Herz 1
PMCID: PMC1170791  PMID: 9707421

Abstract

Sphingolipid activator proteins SAP-A, -B, -C and -D (also called saposins) are generated by proteolytic processing from a 73 kDa precursor and function as obligatory activators of lysosomal enzymes involved in glycosphingolipid metabolism. Although the SAP precursor can be recognized by the mannose-6-phosphate (M-6-P) receptor and shuttled directly from the secretory pathway to the lysosome, a substantial fraction of newly synthesized precursor is secreted from the cell where it may participate in sphingolipid transport and signaling events. Re-uptake of the secreted precursor is mediated by high-affinity cell surface receptors that are apparently distinct from the M-6-P receptor. We found that the low density lipoprotein receptor-related protein (LRP), a multifunctional endocytic receptor that is expressed on most cells, can mediate cellular uptake and lysosomal delivery of SAP precursor. Additional in vivo experiments in mice revealed that the mannose receptor system on macrophages also participates in precursor internalization. We conclude that SAP precursor gains entry into cells by at least three independent receptor mechanisms including the M-6-P receptor, the mannose receptor and LRP.

Full Text

The Full Text of this article is available as a PDF (395.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradová V., Smíd F., Ulrich-Bott B., Roggendorf W., Paton B. C., Harzer K. Prosaposin deficiency: further characterization of the sphingolipid activator protein-deficient sibs. Multiple glycolipid elevations (including lactosylceramidosis), partial enzyme deficiencies and ultrastructure of the skin in this generalized sphingolipid storage disease. Hum Genet. 1993 Sep;92(2):143–152. doi: 10.1007/BF00219682. [DOI] [PubMed] [Google Scholar]
  2. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  3. Fujita N., Suzuki K., Vanier M. T., Popko B., Maeda N., Klein A., Henseler M., Sandhoff K., Nakayasu H., Suzuki K. Targeted disruption of the mouse sphingolipid activator protein gene: a complex phenotype, including severe leukodystrophy and wide-spread storage of multiple sphingolipids. Hum Mol Genet. 1996 Jun;5(6):711–725. doi: 10.1093/hmg/5.6.711. [DOI] [PubMed] [Google Scholar]
  4. Goldstein J. L., Basu S. K., Brown M. S. Receptor-mediated endocytosis of low-density lipoprotein in cultured cells. Methods Enzymol. 1983;98:241–260. doi: 10.1016/0076-6879(83)98152-1. [DOI] [PubMed] [Google Scholar]
  5. Harzer K., Paton B. C., Poulos A., Kustermann-Kuhn B., Roggendorf W., Grisar T., Popp M. Sphingolipid activator protein deficiency in a 16-week-old atypical Gaucher disease patient and his fetal sibling: biochemical signs of combined sphingolipidoses. Eur J Pediatr. 1989 Oct;149(1):31–39. doi: 10.1007/BF02024331. [DOI] [PubMed] [Google Scholar]
  6. Hasilik A., Neufeld E. F. Biosynthesis of lysosomal enzymes in fibroblasts. Phosphorylation of mannose residues. J Biol Chem. 1980 May 25;255(10):4946–4950. [PubMed] [Google Scholar]
  7. Henseler M., Klein A., Reber M., Vanier M. T., Landrieu P., Sandhoff K. Analysis of a splice-site mutation in the sap-precursor gene of a patient with metachromatic leukodystrophy. Am J Hum Genet. 1996 Jan;58(1):65–74. [PMC free article] [PubMed] [Google Scholar]
  8. Herz J., Goldstein J. L., Strickland D. K., Ho Y. K., Brown M. S. 39-kDa protein modulates binding of ligands to low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor. J Biol Chem. 1991 Nov 5;266(31):21232–21238. [PubMed] [Google Scholar]
  9. Herz J., Qiu S. Q., Oesterle A., DeSilva H. V., Shafi S., Havel R. J. Initial hepatic removal of chylomicron remnants is unaffected but endocytosis is delayed in mice lacking the low density lipoprotein receptor. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4611–4615. doi: 10.1073/pnas.92.10.4611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hickman S., Neufeld E. F. A hypothesis for I-cell disease: defective hydrolases that do not enter lysosomes. Biochem Biophys Res Commun. 1972 Nov 15;49(4):992–999. doi: 10.1016/0006-291x(72)90310-5. [DOI] [PubMed] [Google Scholar]
  11. Hineno T., Sano A., Kondoh K., Ueno S., Kakimoto Y., Yoshida K. Secretion of sphingolipid hydrolase activator precursor, prosaposin. Biochem Biophys Res Commun. 1991 Apr 30;176(2):668–674. doi: 10.1016/s0006-291x(05)80236-0. [DOI] [PubMed] [Google Scholar]
  12. Hiraiwa M., Soeda S., Kishimoto Y., O'Brien J. S. Binding and transport of gangliosides by prosaposin. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11254–11258. doi: 10.1073/pnas.89.23.11254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hiraiwa M., Taylor E. M., Campana W. M., Darin S. J., O'Brien J. S. Cell death prevention, mitogen-activated protein kinase stimulation, and increased sulfatide concentrations in Schwann cells and oligodendrocytes by prosaposin and prosaptides. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4778–4781. doi: 10.1073/pnas.94.9.4778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kishimoto Y., Hiraiwa M., O'Brien J. S. Saposins: structure, function, distribution, and molecular genetics. J Lipid Res. 1992 Sep;33(9):1255–1267. [PubMed] [Google Scholar]
  15. Kornfeld S., Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol. 1989;5:483–525. doi: 10.1146/annurev.cb.05.110189.002411. [DOI] [PubMed] [Google Scholar]
  16. Kotani Y., Matsuda S., Wen T. C., Sakanaka M., Tanaka J., Maeda N., Kondoh K., Ueno S., Sano A. A hydrophilic peptide comprising 18 amino acid residues of the prosaposin sequence has neurotrophic activity in vitro and in vivo. J Neurochem. 1996 May;66(5):2197–2200. doi: 10.1046/j.1471-4159.1996.66052197.x. [DOI] [PubMed] [Google Scholar]
  17. Kowal R. C., Herz J., Goldstein J. L., Esser V., Brown M. S. Low density lipoprotein receptor-related protein mediates uptake of cholesteryl esters derived from apoprotein E-enriched lipoproteins. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5810–5814. doi: 10.1073/pnas.86.15.5810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kowal R. C., Herz J., Weisgraber K. H., Mahley R. W., Brown M. S., Goldstein J. L. Opposing effects of apolipoproteins E and C on lipoprotein binding to low density lipoprotein receptor-related protein. J Biol Chem. 1990 Jun 25;265(18):10771–10779. [PubMed] [Google Scholar]
  19. Krieger M., Herz J. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu Rev Biochem. 1994;63:601–637. doi: 10.1146/annurev.bi.63.070194.003125. [DOI] [PubMed] [Google Scholar]
  20. Lindstedt K. A., Bujo H., Mahon M. G., Nimpf J., Schneider W. J. Germ cell-somatic cell dichotomy of a low-density lipoprotein receptor gene family member in testis. DNA Cell Biol. 1997 Jan;16(1):35–43. doi: 10.1089/dna.1997.16.35. [DOI] [PubMed] [Google Scholar]
  21. Morgan D. O., Edman J. C., Standring D. N., Fried V. A., Smith M. C., Roth R. A., Rutter W. J. Insulin-like growth factor II receptor as a multifunctional binding protein. Nature. 1987 Sep 24;329(6137):301–307. doi: 10.1038/329301a0. [DOI] [PubMed] [Google Scholar]
  22. O'Brien J. S., Carson G. S., Seo H. C., Hiraiwa M., Kishimoto Y. Identification of prosaposin as a neurotrophic factor. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9593–9596. doi: 10.1073/pnas.91.20.9593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Orth K., Madison E. L., Gething M. J., Sambrook J. F., Herz J. Complexes of tissue-type plasminogen activator and its serpin inhibitor plasminogen-activator inhibitor type 1 are internalized by means of the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7422–7426. doi: 10.1073/pnas.89.16.7422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Paton B. C., Hughes J. L., Harzer K., Poulos A. Immunocytochemical localization of sphingolipid activator protein 2 (SAP-2) in normal and SAP-deficient fibroblasts. Eur J Cell Biol. 1990 Feb;51(1):157–164. [PubMed] [Google Scholar]
  25. Paton B. C., Schmid B., Kustermann-Kuhn B., Poulos A., Harzer K. Additional biochemical findings in a patient and fetal sibling with a genetic defect in the sphingolipid activator protein (SAP) precursor, prosaposin. Evidence for a deficiency in SAP-1 and for a normal lysosomal neuraminidase. Biochem J. 1992 Jul 15;285(Pt 2):481–488. doi: 10.1042/bj2850481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rafi M. A., Zhang X. L., DeGala G., Wenger D. A. Detection of a point mutation in sphingolipid activator protein-1 mRNA in patients with a variant form of metachromatic leukodystrophy. Biochem Biophys Res Commun. 1990 Jan 30;166(2):1017–1023. doi: 10.1016/0006-291x(90)90912-7. [DOI] [PubMed] [Google Scholar]
  27. Rafi M. A., de Gala G., Zhang X. L., Wenger D. A. Mutational analysis in a patient with a variant form of Gaucher disease caused by SAP-2 deficiency. Somat Cell Mol Genet. 1993 Jan;19(1):1–7. doi: 10.1007/BF01233949. [DOI] [PubMed] [Google Scholar]
  28. Rohlmann A., Gotthardt M., Hammer R. E., Herz J. Inducible inactivation of hepatic LRP gene by cre-mediated recombination confirms role of LRP in clearance of chylomicron remnants. J Clin Invest. 1998 Feb 1;101(3):689–695. doi: 10.1172/JCI1240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rohlmann A., Gotthardt M., Willnow T. E., Hammer R. E., Herz J. Sustained somatic gene inactivation by viral transfer of Cre recombinase. Nat Biotechnol. 1996 Nov;14(11):1562–1565. doi: 10.1038/nbt1196-1562. [DOI] [PubMed] [Google Scholar]
  30. Sandhoff K., Kolter T. Biochemistry of glycosphingolipid degradation. Clin Chim Acta. 1997 Oct 9;266(1):51–61. doi: 10.1016/s0009-8981(97)00166-6. [DOI] [PubMed] [Google Scholar]
  31. Sandhoff K., Kolter T. Topology of glycosphingolipid degradation. Trends Cell Biol. 1996 Mar;6(3):98–103. doi: 10.1016/0962-8924(96)80999-8. [DOI] [PubMed] [Google Scholar]
  32. Schmid B., Paton B. C., Sandhoff K., Harzer K. Metabolism of GM1 ganglioside in cultured skin fibroblasts: anomalies in gangliosidoses, sialidoses, and sphingolipid activator protein (SAP, saposin) 1 and prosaposin deficient disorders. Hum Genet. 1992 Jul;89(5):513–518. doi: 10.1007/BF00219176. [DOI] [PubMed] [Google Scholar]
  33. Schnabel D., Schröder M., Sandhoff K. Mutation in the sphingolipid activator protein 2 in a patient with a variant of Gaucher disease. FEBS Lett. 1991 Jun 17;284(1):57–59. doi: 10.1016/0014-5793(91)80760-z. [DOI] [PubMed] [Google Scholar]
  34. Vaccaro A. M., Tatti M., Ciaffoni F., Salvioli R., Barca A., Scerch C. Effect of saposins A and C on the enzymatic hydrolysis of liposomal glucosylceramide. J Biol Chem. 1997 Jul 4;272(27):16862–16867. doi: 10.1074/jbc.272.27.16862. [DOI] [PubMed] [Google Scholar]
  35. Varki A. P., Reitman M. L., Kornfeld S. Identification of a variant of mucolipidosis III (pseudo-Hurler polydystrophy): a catalytically active N-acetylglucosaminylphosphotransferase that fails to phosphorylate lysosomal enzymes. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7773–7777. doi: 10.1073/pnas.78.12.7773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vielhaber G., Hurwitz R., Sandhoff K. Biosynthesis, processing, and targeting of sphingolipid activator protein (SAP )precursor in cultured human fibroblasts. Mannose 6-phosphate receptor-independent endocytosis of SAP precursor. J Biol Chem. 1996 Dec 13;271(50):32438–32446. doi: 10.1074/jbc.271.50.32438. [DOI] [PubMed] [Google Scholar]
  37. Weiler S., Kishimoto Y., O'Brien J. S., Barranger J. A., Tomich J. M. Identification of the binding and activating sites of the sphingolipid activator protein, saposin C, with glucocerebrosidase. Protein Sci. 1995 Apr;4(4):756–764. doi: 10.1002/pro.5560040415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Willnow T. E., Herz J. Genetic deficiency in low density lipoprotein receptor-related protein confers cellular resistance to Pseudomonas exotoxin A. Evidence that this protein is required for uptake and degradation of multiple ligands. J Cell Sci. 1994 Mar;107(Pt 3):719–726. [PubMed] [Google Scholar]
  39. Zhang X. L., Rafi M. A., DeGala G., Wenger D. A. Insertion in the mRNA of a metachromatic leukodystrophy patient with sphingolipid activator protein-1 deficiency. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1426–1430. doi: 10.1073/pnas.87.4.1426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zhang X. L., Rafi M. A., DeGala G., Wenger D. A. The mechanism for a 33-nucleotide insertion in mRNA causing sphingolipid activator protein (SAP-1)-deficient metachromatic leukodystrophy. Hum Genet. 1991 Jun;87(2):211–215. doi: 10.1007/BF00204185. [DOI] [PubMed] [Google Scholar]
  41. van Dongen J. M., Willemsen R., Ginns E. I., Sips H. J., Tager J. M., Barranger J. A., Reuser A. J. The subcellular localization of soluble and membrane-bound lysosomal enzymes in I-cell fibroblasts: a comparative immunocytochemical study. Eur J Cell Biol. 1985 Nov;39(1):179–189. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES