Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Aug 17;17(16):4712–4722. doi: 10.1093/emboj/17.16.4712

p160ROCK mediates RhoA activation of Na-H exchange.

T Tominaga 1, T Ishizaki 1, S Narumiya 1, D L Barber 1
PMCID: PMC1170800  PMID: 9707430

Abstract

The ubiquitously expressed Na-H exchanger, NHE1, acts downstream of RhoA in a pathway regulating focal adhesion and actin stress fiber formation. p160ROCK, a serine/threonine protein kinase, is a direct RhoA target mediating RhoA-induced assembly of focal adhesions and stress fibers. Here, stress fiber formation induced by p160ROCK was inhibited by the addition of a specific NHE1 inhibitor, ethylisopropylamiloride, in CCL39 fibroblasts, and was absent in PS120 mutant fibroblasts lacking NHE1. In CCL39 cells, NHE1 activity was stimulated by expression of mutationally active p160ROCK, but not by mutationally active protein kinase N, another RhoA target kinase. Expression of a dominant interfering p160ROCK inhibited RhoA-, but not Cdc42- or Rac-activation of NEH1. In addition, the p160ROCK-specific inhibitor Y-27632 inhibited increases in NHE1 activity in response to RhoA, and to lysophosphatidic acid (LPA), which stimulates RhoA, and it also inhibited LPA-increased phosphorylation of NHE1. A C-terminal truncation of NHE1 abolished both LPA-induced phosphorylation and activation of the exchanger. Furthermore, mutationally active p160ROCK phosphorylated an NHE1 C-terminal fusion protein in vitro, and this was inhibited in the presence of Y-27632. Phosphopeptide maps indicated that identical residues in NHE1 were phosphorylated by p160ROCK in vivo and in vitro. These findings identify p160ROCK as an upstream, possibly direct, activator of NHE1, and suggest that NHE1 activity and phosphorylation are necessary for actin stress fiber assembly induced by p160ROCK.

Full Text

The Full Text of this article is available as a PDF (605.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amano M., Chihara K., Kimura K., Fukata Y., Nakamura N., Matsuura Y., Kaibuchi K. Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science. 1997 Feb 28;275(5304):1308–1311. doi: 10.1126/science.275.5304.1308. [DOI] [PubMed] [Google Scholar]
  2. Amano M., Ito M., Kimura K., Fukata Y., Chihara K., Nakano T., Matsuura Y., Kaibuchi K. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem. 1996 Aug 23;271(34):20246–20249. doi: 10.1074/jbc.271.34.20246. [DOI] [PubMed] [Google Scholar]
  3. Amano M., Mukai H., Ono Y., Chihara K., Matsui T., Hamajima Y., Okawa K., Iwamatsu A., Kaibuchi K. Identification of a putative target for Rho as the serine-threonine kinase protein kinase N. Science. 1996 Feb 2;271(5249):648–650. doi: 10.1126/science.271.5249.648. [DOI] [PubMed] [Google Scholar]
  4. An X. L., Takakuwa Y., Nunomura W., Manno S., Mohandas N. Modulation of band 3-ankyrin interaction by protein 4.1. Functional implications in regulation of erythrocyte membrane mechanical properties. J Biol Chem. 1996 Dec 27;271(52):33187–33191. doi: 10.1074/jbc.271.52.33187. [DOI] [PubMed] [Google Scholar]
  5. Aviv A. The links between cellular Ca2+ and Na+/H+ exchange in the pathophysiology of essential hypertension. Am J Hypertens. 1996 Jul;9(7):703–707. doi: 10.1016/0895-7061(95)00447-5. [DOI] [PubMed] [Google Scholar]
  6. Boron W. F., De Weer P. Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors. J Gen Physiol. 1976 Jan;67(1):91–112. doi: 10.1085/jgp.67.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Buhl A. M., Johnson N. L., Dhanasekaran N., Johnson G. L. G alpha 12 and G alpha 13 stimulate Rho-dependent stress fiber formation and focal adhesion assembly. J Biol Chem. 1995 Oct 20;270(42):24631–24634. doi: 10.1074/jbc.270.42.24631. [DOI] [PubMed] [Google Scholar]
  8. Chrzanowska-Wodnicka M., Burridge K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol. 1996 Jun;133(6):1403–1415. doi: 10.1083/jcb.133.6.1403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cox G. A., Lutz C. M., Yang C. L., Biemesderfer D., Bronson R. T., Fu A., Aronson P. S., Noebels J. L., Frankel W. N. Sodium/hydrogen exchanger gene defect in slow-wave epilepsy mutant mice. Cell. 1997 Oct 3;91(1):139–148. doi: 10.1016/s0092-8674(01)80016-7. [DOI] [PubMed] [Google Scholar]
  10. Dhanasekaran N., Prasad M. V., Wadsworth S. J., Dermott J. M., van Rossum G. Protein kinase C-dependent and -independent activation of Na+/H+ exchanger by G alpha 12 class of G proteins. J Biol Chem. 1994 Apr 22;269(16):11802–11806. [PubMed] [Google Scholar]
  11. Ding Y., Kobayashi S., Kopito R. Mapping of ankyrin binding determinants on the erythroid anion exchanger, AE1. J Biol Chem. 1996 Sep 13;271(37):22494–22498. doi: 10.1074/jbc.271.37.22494. [DOI] [PubMed] [Google Scholar]
  12. Fujita A., Saito Y., Ishizaki T., Maekawa M., Fujisawa K., Ushikubi F., Narumiya S. Integrin-dependent translocation of p160ROCK to cytoskeletal complex in thrombin-stimulated human platelets. Biochem J. 1997 Dec 15;328(Pt 3):769–775. doi: 10.1042/bj3280769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goss G. G., Woodside M., Wakabayashi S., Pouyssegur J., Waddell T., Downey G. P., Grinstein S. ATP dependence of NHE-1, the ubiquitous isoform of the Na+/H+ antiporter. Analysis of phosphorylation and subcellular localization. J Biol Chem. 1994 Mar 25;269(12):8741–8748. [PubMed] [Google Scholar]
  14. Grinstein S., Rotin D., Mason M. J. Na+/H+ exchange and growth factor-induced cytosolic pH changes. Role in cellular proliferation. Biochim Biophys Acta. 1989 Jan 18;988(1):73–97. doi: 10.1016/0304-4157(89)90004-x. [DOI] [PubMed] [Google Scholar]
  15. Grinstein S., Woodside M., Sardet C., Pouyssegur J., Rotin D. Activation of the Na+/H+ antiporter during cell volume regulation. Evidence for a phosphorylation-independent mechanism. J Biol Chem. 1992 Nov 25;267(33):23823–23828. [PubMed] [Google Scholar]
  16. Grinstein S., Woodside M., Waddell T. K., Downey G. P., Orlowski J., Pouyssegur J., Wong D. C., Foskett J. K. Focal localization of the NHE-1 isoform of the Na+/H+ antiport: assessment of effects on intracellular pH. EMBO J. 1993 Dec 15;12(13):5209–5218. doi: 10.1002/j.1460-2075.1993.tb06216.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Grussenmeyer T., Scheidtmann K. H., Hutchinson M. A., Eckhart W., Walter G. Complexes of polyoma virus medium T antigen and cellular proteins. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7952–7954. doi: 10.1073/pnas.82.23.7952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hirai A., Nakamura S., Noguchi Y., Yasuda T., Kitagawa M., Tatsuno I., Oeda T., Tahara K., Terano T., Narumiya S. Geranylgeranylated rho small GTPase(s) are essential for the degradation of p27Kip1 and facilitate the progression from G1 to S phase in growth-stimulated rat FRTL-5 cells. J Biol Chem. 1997 Jan 3;272(1):13–16. [PubMed] [Google Scholar]
  19. Hooley R., Yu C. Y., Symons M., Barber D. L. G alpha 13 stimulates Na+-H+ exchange through distinct Cdc42-dependent and RhoA-dependent pathways. J Biol Chem. 1996 Mar 15;271(11):6152–6158. doi: 10.1074/jbc.271.11.6152. [DOI] [PubMed] [Google Scholar]
  20. Hotchin N. A., Hall A. The assembly of integrin adhesion complexes requires both extracellular matrix and intracellular rho/rac GTPases. J Cell Biol. 1995 Dec;131(6 Pt 2):1857–1865. doi: 10.1083/jcb.131.6.1857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ingber D. E., Prusty D., Frangioni J. V., Cragoe E. J., Jr, Lechene C., Schwartz M. A. Control of intracellular pH and growth by fibronectin in capillary endothelial cells. J Cell Biol. 1990 May;110(5):1803–1811. doi: 10.1083/jcb.110.5.1803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ishizaki T., Maekawa M., Fujisawa K., Okawa K., Iwamatsu A., Fujita A., Watanabe N., Saito Y., Kakizuka A., Morii N. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J. 1996 Apr 15;15(8):1885–1893. [PMC free article] [PubMed] [Google Scholar]
  23. Ishizaki T., Naito M., Fujisawa K., Maekawa M., Watanabe N., Saito Y., Narumiya S. p160ROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions. FEBS Lett. 1997 Mar 10;404(2-3):118–124. doi: 10.1016/s0014-5793(97)00107-5. [DOI] [PubMed] [Google Scholar]
  24. Kaplan D. L., Boron W. F. Long-term expression of c-H-ras stimulates Na-H and Na(+)-dependent Cl-HCO3 exchange in NIH-3T3 fibroblasts. J Biol Chem. 1994 Feb 11;269(6):4116–4124. [PubMed] [Google Scholar]
  25. Kimura K., Ito M., Amano M., Chihara K., Fukata Y., Nakafuku M., Yamamori B., Feng J., Nakano T., Okawa K. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase) Science. 1996 Jul 12;273(5272):245–248. doi: 10.1126/science.273.5272.245. [DOI] [PubMed] [Google Scholar]
  26. Kishi K., Sasaki T., Kuroda S., Itoh T., Takai Y. Regulation of cytoplasmic division of Xenopus embryo by rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI). J Cell Biol. 1993 Mar;120(5):1187–1195. doi: 10.1083/jcb.120.5.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kitamura K., Singer W. D., Cano A., Miller R. T. G alpha q and G alpha 13 regulate NHE-1 and intracellular calcium in epithelial cells. Am J Physiol. 1995 Jan;268(1 Pt 1):C101–C110. doi: 10.1152/ajpcell.1995.268.1.C101. [DOI] [PubMed] [Google Scholar]
  28. Kozma R., Ahmed S., Best A., Lim L. The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol Cell Biol. 1995 Apr;15(4):1942–1952. doi: 10.1128/mcb.15.4.1942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Krump E., Nikitas K., Grinstein S. Induction of tyrosine phosphorylation and Na+/H+ exchanger activation during shrinkage of human neutrophils. J Biol Chem. 1997 Jul 11;272(28):17303–17311. doi: 10.1074/jbc.272.28.17303. [DOI] [PubMed] [Google Scholar]
  30. Kuro-o M., Hanaoka K., Hiroi Y., Noguchi T., Fujimori Y., Takewaki S., Hayasaka M., Katoh H., Miyagishi A., Nagai R. Salt-sensitive hypertension in transgenic mice overexpressing Na(+)-proton exchanger. Circ Res. 1995 Jan;76(1):148–153. doi: 10.1161/01.res.76.1.148. [DOI] [PubMed] [Google Scholar]
  31. Laudanna C., Campbell J. J., Butcher E. C. Role of Rho in chemoattractant-activated leukocyte adhesion through integrins. Science. 1996 Feb 16;271(5251):981–983. doi: 10.1126/science.271.5251.981. [DOI] [PubMed] [Google Scholar]
  32. Leung T., Chen X. Q., Manser E., Lim L. The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol Cell Biol. 1996 Oct;16(10):5313–5327. doi: 10.1128/mcb.16.10.5313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Leung T., Manser E., Tan L., Lim L. A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem. 1995 Dec 8;270(49):29051–29054. doi: 10.1074/jbc.270.49.29051. [DOI] [PubMed] [Google Scholar]
  34. Mabuchi I., Hamaguchi Y., Fujimoto H., Morii N., Mishima M., Narumiya S. A rho-like protein is involved in the organisation of the contractile ring in dividing sand dollar eggs. Zygote. 1993 Nov;1(4):325–331. doi: 10.1017/s0967199400001659. [DOI] [PubMed] [Google Scholar]
  35. Maly K., Uberall F., Loferer H., Doppler W., Oberhuber H., Groner B., Grunicke H. H. Ha-ras activates the Na+/H+ antiporter by a protein kinase C-independent mechanism. J Biol Chem. 1989 Jul 15;264(20):11839–11842. [PubMed] [Google Scholar]
  36. Matsui T., Amano M., Yamamoto T., Chihara K., Nakafuku M., Ito M., Nakano T., Okawa K., Iwamatsu A., Kaibuchi K. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J. 1996 May 1;15(9):2208–2216. [PMC free article] [PubMed] [Google Scholar]
  37. Mitchison T. J., Cramer L. P. Actin-based cell motility and cell locomotion. Cell. 1996 Feb 9;84(3):371–379. doi: 10.1016/s0092-8674(00)81281-7. [DOI] [PubMed] [Google Scholar]
  38. Mukai H., Toshimori M., Shibata H., Takanaga H., Kitagawa M., Miyahara M., Shimakawa M., Ono Y. Interaction of PKN with alpha-actinin. J Biol Chem. 1997 Feb 21;272(8):4740–4746. doi: 10.1074/jbc.272.8.4740. [DOI] [PubMed] [Google Scholar]
  39. Nakagawa O., Fujisawa K., Ishizaki T., Saito Y., Nakao K., Narumiya S. ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett. 1996 Aug 26;392(2):189–193. doi: 10.1016/0014-5793(96)00811-3. [DOI] [PubMed] [Google Scholar]
  40. Nobes C. D., Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell. 1995 Apr 7;81(1):53–62. doi: 10.1016/0092-8674(95)90370-4. [DOI] [PubMed] [Google Scholar]
  41. Noël J., Pouysségur J. Hormonal regulation, pharmacology, and membrane sorting of vertebrate Na+/H+ exchanger isoforms. Am J Physiol. 1995 Feb;268(2 Pt 1):C283–C296. doi: 10.1152/ajpcell.1995.268.2.C283. [DOI] [PubMed] [Google Scholar]
  42. Olson M. F., Ashworth A., Hall A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science. 1995 Sep 1;269(5228):1270–1272. doi: 10.1126/science.7652575. [DOI] [PubMed] [Google Scholar]
  43. Plopper G. E., McNamee H. P., Dike L. E., Bojanowski K., Ingber D. E. Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol Biol Cell. 1995 Oct;6(10):1349–1365. doi: 10.1091/mbc.6.10.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Pouysségur J., Sardet C., Franchi A., L'Allemain G., Paris S. A specific mutation abolishing Na+/H+ antiport activity in hamster fibroblasts precludes growth at neutral and acidic pH. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4833–4837. doi: 10.1073/pnas.81.15.4833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Price L. S., Norman J. C., Ridley A. J., Koffer A. The small GTPases Rac and Rho as regulators of secretion in mast cells. Curr Biol. 1995 Jan 1;5(1):68–73. doi: 10.1016/s0960-9822(95)00018-2. [DOI] [PubMed] [Google Scholar]
  46. Qiu R. G., Chen J., Kirn D., McCormick F., Symons M. An essential role for Rac in Ras transformation. Nature. 1995 Mar 30;374(6521):457–459. doi: 10.1038/374457a0. [DOI] [PubMed] [Google Scholar]
  47. Qiu R. G., Chen J., McCormick F., Symons M. A role for Rho in Ras transformation. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11781–11785. doi: 10.1073/pnas.92.25.11781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Reid T., Furuyashiki T., Ishizaki T., Watanabe G., Watanabe N., Fujisawa K., Morii N., Madaule P., Narumiya S. Rhotekin, a new putative target for Rho bearing homology to a serine/threonine kinase, PKN, and rhophilin in the rho-binding domain. J Biol Chem. 1996 Jun 7;271(23):13556–13560. doi: 10.1074/jbc.271.23.13556. [DOI] [PubMed] [Google Scholar]
  49. Ridley A. J., Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992 Aug 7;70(3):389–399. doi: 10.1016/0092-8674(92)90163-7. [DOI] [PubMed] [Google Scholar]
  50. Sardet C., Fafournoux P., Pouysségur J. Alpha-thrombin, epidermal growth factor, and okadaic acid activate the Na+/H+ exchanger, NHE-1, by phosphorylating a set of common sites. J Biol Chem. 1991 Oct 15;266(29):19166–19171. [PubMed] [Google Scholar]
  51. Schwartz M. A. Integrins, oncogenes, and anchorage independence. J Cell Biol. 1997 Nov 3;139(3):575–578. doi: 10.1083/jcb.139.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Schwartz M. A., Lechene C., Ingber D. E. Insoluble fibronectin activates the Na/H antiporter by clustering and immobilizing integrin alpha 5 beta 1, independent of cell shape. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7849–7853. doi: 10.1073/pnas.88.17.7849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Silva N. L., Haworth R. S., Singh D., Fliegel L. The carboxyl-terminal region of the Na+/H+ exchanger interacts with mammalian heat shock protein. Biochemistry. 1995 Aug 22;34(33):10412–10420. doi: 10.1021/bi00033a013. [DOI] [PubMed] [Google Scholar]
  54. Simchowitz L., Cragoe E. J., Jr Regulation of human neutrophil chemotaxis by intracellular pH. J Biol Chem. 1986 May 15;261(14):6492–6500. [PubMed] [Google Scholar]
  55. Stasia M. J., Jouan A., Bourmeyster N., Boquet P., Vignais P. V. ADP-ribosylation of a small size GTP-binding protein in bovine neutrophils by the C3 exoenzyme of Clostridium botulinum and effect on the cell motility. Biochem Biophys Res Commun. 1991 Oct 31;180(2):615–622. doi: 10.1016/s0006-291x(05)81110-6. [DOI] [PubMed] [Google Scholar]
  56. Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry. 1979 May 29;18(11):2210–2218. doi: 10.1021/bi00578a012. [DOI] [PubMed] [Google Scholar]
  57. Tominaga T., Barber D. L. Na-H exchange acts downstream of RhoA to regulate integrin-induced cell adhesion and spreading. Mol Biol Cell. 1998 Aug;9(8):2287–2303. doi: 10.1091/mbc.9.8.2287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Tominaga T., Sugie K., Hirata M., Morii N., Fukata J., Uchida A., Imura H., Narumiya S. Inhibition of PMA-induced, LFA-1-dependent lymphocyte aggregation by ADP ribosylation of the small molecular weight GTP binding protein, rho. J Cell Biol. 1993 Mar;120(6):1529–1537. doi: 10.1083/jcb.120.6.1529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Uehata M., Ishizaki T., Satoh H., Ono T., Kawahara T., Morishita T., Tamakawa H., Yamagami K., Inui J., Maekawa M. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997 Oct 30;389(6654):990–994. doi: 10.1038/40187. [DOI] [PubMed] [Google Scholar]
  60. Vexler Z. S., Symons M., Barber D. L. Activation of Na+-H+ exchange is necessary for RhoA-induced stress fiber formation. J Biol Chem. 1996 Sep 13;271(37):22281–22284. doi: 10.1074/jbc.271.37.22281. [DOI] [PubMed] [Google Scholar]
  61. Voyno-Yasenetskaya T., Conklin B. R., Gilbert R. L., Hooley R., Bourne H. R., Barber D. L. G alpha 13 stimulates Na-H exchange. J Biol Chem. 1994 Feb 18;269(7):4721–4724. [PubMed] [Google Scholar]
  62. Wakabayashi S., Bertrand B., Ikeda T., Pouysségur J., Shigekawa M. Mutation of calmodulin-binding site renders the Na+/H+ exchanger (NHE1) highly H(+)-sensitive and Ca2+ regulation-defective. J Biol Chem. 1994 May 6;269(18):13710–13715. [PubMed] [Google Scholar]
  63. Wakabayashi S., Bertrand B., Shigekawa M., Fafournoux P., Pouysségur J. Growth factor activation and "H(+)-sensing" of the Na+/H+ exchanger isoform 1 (NHE1). Evidence for an additional mechanism not requiring direct phosphorylation. J Biol Chem. 1994 Feb 25;269(8):5583–5588. [PubMed] [Google Scholar]
  64. Wakabayashi S., Fafournoux P., Sardet C., Pouysségur J. The Na+/H+ antiporter cytoplasmic domain mediates growth factor signals and controls "H(+)-sensing". Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2424–2428. doi: 10.1073/pnas.89.6.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Watanabe G., Saito Y., Madaule P., Ishizaki T., Fujisawa K., Morii N., Mukai H., Ono Y., Kakizuka A., Narumiya S. Protein kinase N (PKN) and PKN-related protein rhophilin as targets of small GTPase Rho. Science. 1996 Feb 2;271(5249):645–648. doi: 10.1126/science.271.5249.645. [DOI] [PubMed] [Google Scholar]
  66. Watanabe N., Madaule P., Reid T., Ishizaki T., Watanabe G., Kakizuka A., Saito Y., Nakao K., Jockusch B. M., Narumiya S. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. 1997 Jun 2;16(11):3044–3056. doi: 10.1093/emboj/16.11.3044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Winkel G. K., Sardet C., Pouyssegur J., Ives H. E. Role of cytoplasmic domain of the Na+/H+ exchanger in hormonal activation. J Biol Chem. 1993 Feb 15;268(5):3396–3400. [PubMed] [Google Scholar]
  68. Yamamoto M., Marui N., Sakai T., Morii N., Kozaki S., Ikai K., Imamura S., Narumiya S. ADP-ribosylation of the rhoA gene product by botulinum C3 exoenzyme causes Swiss 3T3 cells to accumulate in the G1 phase of the cell cycle. Oncogene. 1993 Jun;8(6):1449–1455. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES