Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Aug 17;17(16):4735–4743. doi: 10.1093/emboj/17.16.4735

BMP-4 is proteolytically activated by furin and/or PC6 during vertebrate embryonic development.

Y Cui 1, F Jean 1, G Thomas 1, J L Christian 1
PMCID: PMC1170802  PMID: 9707432

Abstract

Bone morphogenetic protein-4 (BMP-4) is a multifunctional developmental regulator. BMP-4 is synthesized as an inactive precursor that is proteolytically activated by cleavage following the amino acid motif -Arg-Ser-Lys-Arg-. Very little is known about processing and secretion of BMPs. The proprotein convertases (PCs) are a family of seven structurally related serine endoproteases, at least one of which, furin, cleaves after the amino acid motif -Arg-X-Arg/Lys-Arg-. To examine potential roles of PCs during embryonic development we have misexpressed a potent protein inhibitor of furin, alpha1-antitrypsin Portland (alpha1-PDX) in early Xenopus embryos. Ectopic expression of alpha1-PDX phenocopies the effect of blocking endogenous BMP activity, leading to dorsalization of mesoderm and direct neural induction. alpha1-PDX-mediated neural induction can be reversed by co-expression of downstream components of the BMP-4 signaling pathway. Thus, alpha1-PDX can block BMP activity upstream of receptor binding, suggesting that it inhibits an endogenous BMP-4 convertase(s). Consistent with this hypothesis, alpha1-PDX prevents cleavage of BMP-4 in an oocyte translation assay. Using an in vitro digestion assay, we demonstrate that four members of the PC family have the ability to cleave BMP-4, but of these, only furin and PC6B are sensitive to alpha1-PDX. These studies provide the first in vivo evidence that furin and/or PC6 proteolytically activate BMP-4 during vertebrate embryogenesis.

Full Text

The Full Text of this article is available as a PDF (385.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson E. D., VanSlyke J. K., Thulin C. D., Jean F., Thomas G. Activation of the furin endoprotease is a multiple-step process: requirements for acidification and internal propeptide cleavage. EMBO J. 1997 Apr 1;16(7):1508–1518. doi: 10.1093/emboj/16.7.1508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aono A., Hazama M., Notoya K., Taketomi S., Yamasaki H., Tsukuda R., Sasaki S., Fujisawa Y. Potent ectopic bone-inducing activity of bone morphogenetic protein-4/7 heterodimer. Biochem Biophys Res Commun. 1995 May 25;210(3):670–677. doi: 10.1006/bbrc.1995.1712. [DOI] [PubMed] [Google Scholar]
  3. Bolce M. E., Hemmati-Brivanlou A., Kushner P. D., Harland R. M. Ventral ectoderm of Xenopus forms neural tissue, including hindbrain, in response to activin. Development. 1992 Jul;115(3):681–688. doi: 10.1242/dev.115.3.681. [DOI] [PubMed] [Google Scholar]
  4. Breslin M. B., Lindberg I., Benjannet S., Mathis J. P., Lazure C., Seidah N. G. Differential processing of proenkephalin by prohormone convertases 1(3) and 2 and furin. J Biol Chem. 1993 Dec 25;268(36):27084–27093. [PubMed] [Google Scholar]
  5. Candia A. F., Watabe T., Hawley S. H., Onichtchouk D., Zhang Y., Derynck R., Niehrs C., Cho K. W. Cellular interpretation of multiple TGF-beta signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads. Development. 1997 Nov;124(22):4467–4480. doi: 10.1242/dev.124.22.4467. [DOI] [PubMed] [Google Scholar]
  6. Cho K. W., Blumberg B., Steinbeisser H., De Robertis E. M. Molecular nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid. Cell. 1991 Dec 20;67(6):1111–1120. doi: 10.1016/0092-8674(91)90288-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Christian J. L., McMahon J. A., McMahon A. P., Moon R. T. Xwnt-8, a Xenopus Wnt-1/int-1-related gene responsive to mesoderm-inducing growth factors, may play a role in ventral mesodermal patterning during embryogenesis. Development. 1991 Apr;111(4):1045–1055. doi: 10.1242/dev.111.4.1045. [DOI] [PubMed] [Google Scholar]
  8. Constam D. B., Calfon M., Robertson E. J. SPC4, SPC6, and the novel protease SPC7 are coexpressed with bone morphogenetic proteins at distinct sites during embryogenesis. J Cell Biol. 1996 Jul;134(1):181–191. doi: 10.1083/jcb.134.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Creemers J. W., Siezen R. J., Roebroek A. J., Ayoubi T. A., Huylebroeck D., Van de Ven W. J. Modulation of furin-mediated proprotein processing activity by site-directed mutagenesis. J Biol Chem. 1993 Oct 15;268(29):21826–21834. [PubMed] [Google Scholar]
  10. Cui Y., Tian Q., Christian J. L. Synergistic effects of Vg1 and Wnt signals in the specification of dorsal mesoderm and endoderm. Dev Biol. 1996 Nov 25;180(1):22–34. doi: 10.1006/dbio.1996.0281. [DOI] [PubMed] [Google Scholar]
  11. Dubois C. M., Laprise M. H., Blanchette F., Gentry L. E., Leduc R. Processing of transforming growth factor beta 1 precursor by human furin convertase. J Biol Chem. 1995 May 5;270(18):10618–10624. doi: 10.1074/jbc.270.18.10618. [DOI] [PubMed] [Google Scholar]
  12. Fainsod A., Steinbeisser H., De Robertis E. M. On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo. EMBO J. 1994 Nov 1;13(21):5015–5025. doi: 10.1002/j.1460-2075.1994.tb06830.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Graff J. M. Embryonic patterning: to BMP or not to BMP, that is the question. Cell. 1997 Apr 18;89(2):171–174. doi: 10.1016/s0092-8674(00)80196-8. [DOI] [PubMed] [Google Scholar]
  14. Graff J. M., Thies R. S., Song J. J., Celeste A. J., Melton D. A. Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo. Cell. 1994 Oct 7;79(1):169–179. doi: 10.1016/0092-8674(94)90409-x. [DOI] [PubMed] [Google Scholar]
  15. Heldin C. H., Miyazono K., ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997 Dec 4;390(6659):465–471. doi: 10.1038/37284. [DOI] [PubMed] [Google Scholar]
  16. Hemmati-Brivanlou A., Melton D. A. A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature. 1992 Oct 15;359(6396):609–614. doi: 10.1038/359609a0. [DOI] [PubMed] [Google Scholar]
  17. Hogan B. L., Blessing M., Winnier G. E., Suzuki N., Jones C. M. Growth factors in development: the role of TGF-beta related polypeptide signalling molecules in embryogenesis. Dev Suppl. 1994:53–60. [PubMed] [Google Scholar]
  18. Hogan B. L. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 1996 Jul 1;10(13):1580–1594. doi: 10.1101/gad.10.13.1580. [DOI] [PubMed] [Google Scholar]
  19. Jean F., Boudreault A., Basak A., Seidah N. G., Lazure C. Fluorescent peptidyl substrates as an aid in studying the substrate specificity of human prohormone convertase PC1 and human furin and designing a potent irreversible inhibitor. J Biol Chem. 1995 Aug 18;270(33):19225–19231. doi: 10.1074/jbc.270.33.19225. [DOI] [PubMed] [Google Scholar]
  20. Jean F., Stella K., Thomas L., Liu G., Xiang Y., Reason A. J., Thomas G. alpha1-Antitrypsin Portland, a bioengineered serpin highly selective for furin: application as an antipathogenic agent. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7293–7298. doi: 10.1073/pnas.95.13.7293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jones C. M., Armes N., Smith J. C. Signalling by TGF-beta family members: short-range effects of Xnr-2 and BMP-4 contrast with the long-range effects of activin. Curr Biol. 1996 Nov 1;6(11):1468–1475. doi: 10.1016/s0960-9822(96)00751-8. [DOI] [PubMed] [Google Scholar]
  22. Jones C. M., Kuehn M. R., Hogan B. L., Smith J. C., Wright C. V. Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation. Development. 1995 Nov;121(11):3651–3662. doi: 10.1242/dev.121.11.3651. [DOI] [PubMed] [Google Scholar]
  23. Joseph E. M., Melton D. A. Xnr4: a Xenopus nodal-related gene expressed in the Spemann organizer. Dev Biol. 1997 Apr 15;184(2):367–372. doi: 10.1006/dbio.1997.8510. [DOI] [PubMed] [Google Scholar]
  24. Kengaku M., Okamoto H. bFGF as a possible morphogen for the anteroposterior axis of the central nervous system in Xenopus. Development. 1995 Sep;121(9):3121–3130. doi: 10.1242/dev.121.9.3121. [DOI] [PubMed] [Google Scholar]
  25. Kessler D. S., Melton D. A. Induction of dorsal mesoderm by soluble, mature Vg1 protein. Development. 1995 Jul;121(7):2155–2164. doi: 10.1242/dev.121.7.2155. [DOI] [PubMed] [Google Scholar]
  26. Kintner C. R., Brockes J. P. Monoclonal antibodies identify blastemal cells derived from dedifferentiating limb regeneration. Nature. 1984 Mar 1;308(5954):67–69. doi: 10.1038/308067a0. [DOI] [PubMed] [Google Scholar]
  27. Knight C. G. Active-site titration of peptidases. Methods Enzymol. 1995;248:85–101. doi: 10.1016/0076-6879(95)48008-0. [DOI] [PubMed] [Google Scholar]
  28. Korner J., Chun J., O'Bryan L., Axel R. Prohormone processing in Xenopus oocytes: characterization of cleavage signals and cleavage enzymes. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11393–11397. doi: 10.1073/pnas.88.24.11393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Krieg P. A., Melton D. A. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 1984 Sep 25;12(18):7057–7070. doi: 10.1093/nar/12.18.7057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Massaous J., Hata A. TGF-beta signalling through the Smad pathway. Trends Cell Biol. 1997 May;7(5):187–192. doi: 10.1016/S0962-8924(97)01036-2. [DOI] [PubMed] [Google Scholar]
  31. Mbikay M., Tadros H., Ishida N., Lerner C. P., De Lamirande E., Chen A., El-Alfy M., Clermont Y., Seidah N. G., Chrétien M. Impaired fertility in mice deficient for the testicular germ-cell protease PC4. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6842–6846. doi: 10.1073/pnas.94.13.6842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Molloy S. S., Bresnahan P. A., Leppla S. H., Klimpel K. R., Thomas G. Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J Biol Chem. 1992 Aug 15;267(23):16396–16402. [PubMed] [Google Scholar]
  33. Molloy S. S., Thomas L., VanSlyke J. K., Stenberg P. E., Thomas G. Intracellular trafficking and activation of the furin proprotein convertase: localization to the TGN and recycling from the cell surface. EMBO J. 1994 Jan 1;13(1):18–33. doi: 10.1002/j.1460-2075.1994.tb06231.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nakayama K. Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem J. 1997 Nov 1;327(Pt 3):625–635. doi: 10.1042/bj3270625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nakayama K., Kim W. S., Torii S., Hosaka M., Nakagawa T., Ikemizu J., Baba T., Murakami K. Identification of the fourth member of the mammalian endoprotease family homologous to the yeast Kex2 protease. Its testis-specific expression. J Biol Chem. 1992 Mar 25;267(9):5897–5900. [PubMed] [Google Scholar]
  36. Nakayama T., Snyder M. A., Grewal S. S., Tsuneizumi K., Tabata T., Christian J. L. Xenopus Smad8 acts downstream of BMP-4 to modulate its activity during vertebrate embryonic patterning. Development. 1998 Mar;125(5):857–867. doi: 10.1242/dev.125.5.857. [DOI] [PubMed] [Google Scholar]
  37. Seidah N. G., Chrétien M. Eukaryotic protein processing: endoproteolysis of precursor proteins. Curr Opin Biotechnol. 1997 Oct;8(5):602–607. doi: 10.1016/s0958-1669(97)80036-5. [DOI] [PubMed] [Google Scholar]
  38. Smith W. C., McKendry R., Ribisi S., Jr, Harland R. M. A nodal-related gene defines a physical and functional domain within the Spemann organizer. Cell. 1995 Jul 14;82(1):37–46. doi: 10.1016/0092-8674(95)90050-0. [DOI] [PubMed] [Google Scholar]
  39. Steiner D. F., Smeekens S. P., Ohagi S., Chan S. J. The new enzymology of precursor processing endoproteases. J Biol Chem. 1992 Nov 25;267(33):23435–23438. [PubMed] [Google Scholar]
  40. Thacker C., Peters K., Srayko M., Rose A. M. The bli-4 locus of Caenorhabditis elegans encodes structurally distinct kex2/subtilisin-like endoproteases essential for early development and adult morphology. Genes Dev. 1995 Apr 15;9(8):956–971. doi: 10.1101/gad.9.8.956. [DOI] [PubMed] [Google Scholar]
  41. Turner D. L., Weintraub H. Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev. 1994 Jun 15;8(12):1434–1447. doi: 10.1101/gad.8.12.1434. [DOI] [PubMed] [Google Scholar]
  42. Vize P. D., Thomsen G. H. Vg1 and regional specification in vertebrates: a new role for an old molecule. Trends Genet. 1994 Oct;10(10):371–376. doi: 10.1016/0168-9525(94)90134-1. [DOI] [PubMed] [Google Scholar]
  43. Wilson P. A., Hemmati-Brivanlou A. Vertebrate neural induction: inducers, inhibitors, and a new synthesis. Neuron. 1997 May;18(5):699–710. doi: 10.1016/s0896-6273(00)80311-6. [DOI] [PubMed] [Google Scholar]
  44. Wright C. V., Morita E. A., Wilkin D. J., De Robertis E. M. The Xenopus XIHbox 6 homeo protein, a marker of posterior neural induction, is expressed in proliferating neurons. Development. 1990 May;109(1):225–234. doi: 10.1242/dev.109.1.225. [DOI] [PubMed] [Google Scholar]
  45. Wu J. Y., Wen L., Zhang W. J., Rao Y. The secreted product of Xenopus gene lunatic Fringe, a vertebrate signaling molecule. Science. 1996 Jul 19;273(5273):355–358. doi: 10.1126/science.273.5273.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zheng M., Seidah N. G., Pintar J. E. The developmental expression in the rat CNS and peripheral tissues of proteases PC5 and PACE4 mRNAs: comparison with other proprotein processing enzymes. Dev Biol. 1997 Jan 15;181(2):268–283. doi: 10.1006/dbio.1996.8402. [DOI] [PubMed] [Google Scholar]
  47. Zheng M., Streck R. D., Scott R. E., Seidah N. G., Pintar J. E. The developmental expression in rat of proteases furin, PC1, PC2, and carboxypeptidase E: implications for early maturation of proteolytic processing capacity. J Neurosci. 1994 Aug;14(8):4656–4673. doi: 10.1523/JNEUROSCI.14-08-04656.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES