Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Aug 17;17(16):4753–4759. doi: 10.1093/emboj/17.16.4753

A light-independent oscillatory gene mPer3 in mouse SCN and OVLT.

T Takumi 1, K Taguchi 1, S Miyake 1, Y Sakakida 1, N Takashima 1, C Matsubara 1, Y Maebayashi 1, K Okumura 1, S Takekida 1, S Yamamoto 1, K Yagita 1, L Yan 1, M W Young 1, H Okamura 1
PMCID: PMC1170804  PMID: 9707434

Abstract

A new member of the mammalian period gene family, mPer3, was isolated and its expression pattern characterized in the mouse brain. Like mPer1, mPer2 and Drosophila period, mPer3 has a dimerization PAS domain and a cytoplasmic localization domain. mPer3 transcripts showed a clear circadian rhythm in the suprachiasmatic nucleus (SCN). Expression of mPer3 was not induced by exposure to light at any phase of the clock, distinguishing this gene from mPer1 and mPer2. Cycling expression of mPer3 was also found outside the SCN in the organum vasculosum lamina terminalis (OVLT), a potentially key region regulating rhythmic gonadotropin production and pyrogen-induced febrile phenomena. Thus, mPer3 may contribute to pacemaker functions both inside and outside the SCN.

Full Text

The Full Text of this article is available as a PDF (617.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrecht U., Sun Z. S., Eichele G., Lee C. C. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell. 1997 Dec 26;91(7):1055–1064. doi: 10.1016/s0092-8674(00)80495-x. [DOI] [PubMed] [Google Scholar]
  2. Blatteis C. M., Banet M. Autonomic thermoregulation after separation of the preoptic area from the hypothalamus in rats. Pflugers Arch. 1986 May;406(5):480–484. doi: 10.1007/BF00583370. [DOI] [PubMed] [Google Scholar]
  3. Bourque C. W., Oliet S. H. Osmoreceptors in the central nervous system. Annu Rev Physiol. 1997;59:601–619. doi: 10.1146/annurev.physiol.59.1.601. [DOI] [PubMed] [Google Scholar]
  4. Citri Y., Colot H. V., Jacquier A. C., Yu Q., Hall J. C., Baltimore D., Rosbash M. A family of unusually spliced biologically active transcripts encoded by a Drosophila clock gene. Nature. 1987 Mar 5;326(6108):42–47. doi: 10.1038/326042a0. [DOI] [PubMed] [Google Scholar]
  5. Dunlap J. C. Genetics and molecular analysis of circadian rhythms. Annu Rev Genet. 1996;30:579–601. doi: 10.1146/annurev.genet.30.1.579. [DOI] [PubMed] [Google Scholar]
  6. Eastman C. I., Mistlberger R. E., Rechtschaffen A. Suprachiasmatic nuclei lesions eliminate circadian temperature and sleep rhythms in the rat. Physiol Behav. 1984 Mar;32(3):357–368. doi: 10.1016/0031-9384(84)90248-8. [DOI] [PubMed] [Google Scholar]
  7. Hardin P. E., Hall J. C., Rosbash M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature. 1990 Feb 8;343(6258):536–540. doi: 10.1038/343536a0. [DOI] [PubMed] [Google Scholar]
  8. Hastings M. H. Central clocking. Trends Neurosci. 1997 Oct;20(10):459–464. doi: 10.1016/s0166-2236(97)01087-4. [DOI] [PubMed] [Google Scholar]
  9. Huang Z. J., Curtin K. D., Rosbash M. PER protein interactions and temperature compensation of a circadian clock in Drosophila. Science. 1995 Feb 24;267(5201):1169–1172. doi: 10.1126/science.7855598. [DOI] [PubMed] [Google Scholar]
  10. Huang Z. J., Edery I., Rosbash M. PAS is a dimerization domain common to Drosophila period and several transcription factors. Nature. 1993 Jul 15;364(6434):259–262. doi: 10.1038/364259a0. [DOI] [PubMed] [Google Scholar]
  11. Hunter-Ensor M., Ousley A., Sehgal A. Regulation of the Drosophila protein timeless suggests a mechanism for resetting the circadian clock by light. Cell. 1996 Mar 8;84(5):677–685. doi: 10.1016/s0092-8674(00)81046-6. [DOI] [PubMed] [Google Scholar]
  12. Inouye S. T., Kawamura H. Persistence of circadian rhythmicity in a mammalian hypothalamic "island" containing the suprachiasmatic nucleus. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5962–5966. doi: 10.1073/pnas.76.11.5962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jackson F. R., Bargiello T. A., Yun S. H., Young M. W. Product of per locus of Drosophila shares homology with proteoglycans. Nature. 1986 Mar 13;320(6058):185–188. doi: 10.1038/320185a0. [DOI] [PubMed] [Google Scholar]
  14. King D. P., Takahashi J. S. Forward genetic approaches to circadian clocks in mice. Cold Spring Harb Symp Quant Biol. 1996;61:295–302. [PubMed] [Google Scholar]
  15. Nagase T., Ishikawa K., Nakajima D., Ohira M., Seki N., Miyajima N., Tanaka A., Kotani H., Nomura N., Ohara O. Prediction of the coding sequences of unidentified human genes. VII. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro. DNA Res. 1997 Apr 28;4(2):141–150. doi: 10.1093/dnares/4.2.141. [DOI] [PubMed] [Google Scholar]
  16. PITTENDRIGH C. S. Circadian rhythms and the circadian organization of living systems. Cold Spring Harb Symp Quant Biol. 1960;25:159–184. doi: 10.1101/sqb.1960.025.01.015. [DOI] [PubMed] [Google Scholar]
  17. Pittendrigh C. S. Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol. 1993;55:16–54. doi: 10.1146/annurev.ph.55.030193.000313. [DOI] [PubMed] [Google Scholar]
  18. Refinetti R., Kaufman C. M., Menaker M. Complete suprachiasmatic lesions eliminate circadian rhythmicity of body temperature and locomotor activity in golden hamsters. J Comp Physiol A. 1994 Aug;175(2):223–232. doi: 10.1007/BF00215118. [DOI] [PubMed] [Google Scholar]
  19. Reppert S. M., Tsai T., Roca A. L., Sauman I. Cloning of a structural and functional homolog of the circadian clock gene period from the giant silkmoth Antheraea pernyi. Neuron. 1994 Nov;13(5):1167–1176. doi: 10.1016/0896-6273(94)90054-x. [DOI] [PubMed] [Google Scholar]
  20. Rosbash M., Allada R., Dembinska M., Guo W. Q., Le M., Marrus S., Qian Z., Rutila J., Yaglom J., Zeng H. A Drosophila circadian clock. Cold Spring Harb Symp Quant Biol. 1996;61:265–278. [PubMed] [Google Scholar]
  21. Saez L., Young M. W. Regulation of nuclear entry of the Drosophila clock proteins period and timeless. Neuron. 1996 Nov;17(5):911–920. doi: 10.1016/s0896-6273(00)80222-6. [DOI] [PubMed] [Google Scholar]
  22. Satinoff E., Prosser R. A. Suprachiasmatic nuclear lesions eliminate circadian rhythms of drinking and activity, but not of body temperature, in male rats. J Biol Rhythms. 1988 Spring;3(1):1–22. doi: 10.1177/074873048800300101. [DOI] [PubMed] [Google Scholar]
  23. Shearman L. P., Zylka M. J., Weaver D. R., Kolakowski L. F., Jr, Reppert S. M. Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron. 1997 Dec;19(6):1261–1269. doi: 10.1016/s0896-6273(00)80417-1. [DOI] [PubMed] [Google Scholar]
  24. Shigeyoshi Y., Taguchi K., Yamamoto S., Takekida S., Yan L., Tei H., Moriya T., Shibata S., Loros J. J., Dunlap J. C. Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell. 1997 Dec 26;91(7):1043–1053. doi: 10.1016/s0092-8674(00)80494-8. [DOI] [PubMed] [Google Scholar]
  25. Stitt J. T. Differential sensitivity in the sites of fever production by prostaglandin E1 within the hypothalamus of the rat. J Physiol. 1991 Jan;432:99–110. doi: 10.1113/jphysiol.1991.sp018378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sun Z. S., Albrecht U., Zhuchenko O., Bailey J., Eichele G., Lee C. C. RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell. 1997 Sep 19;90(6):1003–1011. doi: 10.1016/s0092-8674(00)80366-9. [DOI] [PubMed] [Google Scholar]
  27. Takumi T., Matsubara C., Shigeyoshi Y., Taguchi K., Yagita K., Maebayashi Y., Sakakida Y., Okumura K., Takashima N., Okamura H. A new mammalian period gene predominantly expressed in the suprachiasmatic nucleus. Genes Cells. 1998 Mar;3(3):167–176. doi: 10.1046/j.1365-2443.1998.00178.x. [DOI] [PubMed] [Google Scholar]
  28. Tei H., Okamura H., Shigeyoshi Y., Fukuhara C., Ozawa R., Hirose M., Sakaki Y. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature. 1997 Oct 2;389(6650):512–516. doi: 10.1038/39086. [DOI] [PubMed] [Google Scholar]
  29. Vallières L., Rivest S. Regulation of the genes encoding interleukin-6, its receptor, and gp130 in the rat brain in response to the immune activator lipopolysaccharide and the proinflammatory cytokine interleukin-1beta. J Neurochem. 1997 Oct;69(4):1668–1683. doi: 10.1046/j.1471-4159.1997.69041668.x. [DOI] [PubMed] [Google Scholar]
  30. Wenger T., Leonardelli J. Circadian and cyclic LHRH variations in the organum vasculosum of the lamina terminalis of female and male rats. Neuroendocrinology. 1980 Nov;31(5):331–337. doi: 10.1159/000123097. [DOI] [PubMed] [Google Scholar]
  31. Young M. W., Wager-Smith K., Vosshall L., Saez L., Myers M. P. Molecular anatomy of a light-sensitive circadian pacemaker in Drosophila. Cold Spring Harb Symp Quant Biol. 1996;61:279–284. [PubMed] [Google Scholar]
  32. Zylka M. J., Shearman L. P., Weaver D. R., Reppert S. M. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron. 1998 Jun;20(6):1103–1110. doi: 10.1016/s0896-6273(00)80492-4. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES