Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Sep 1;17(17):4920–4929. doi: 10.1093/emboj/17.17.4920

DPM2 regulates biosynthesis of dolichol phosphate-mannose in mammalian cells: correct subcellular localization and stabilization of DPM1, and binding of dolichol phosphate.

Y Maeda 1, S Tomita 1, R Watanabe 1, K Ohishi 1, T Kinoshita 1
PMCID: PMC1170821  PMID: 9724629

Abstract

Biosynthesis of glycosylphosphatidylinositol and N-glycan precursor is dependent upon a mannosyl donor, dolichol phosphate-mannose (DPM). The Thy-1negative class E mutant of mouse lymphoma and Lec15 mutant Chinese hamster ovary (CHO) cells are incapable of DPM synthesis. The class E mutant is defective in the DPM1 gene which encodes a mammalian homologue of Saccharomyces cerevisiae Dpm1p that is a DPM synthase, whereas Lec15 is a different mutant, indicating that mammalian DPM1 is not sufficient for DPM synthesis. Here we report expression cloning of a new gene, DPM2, which is defective in Lec15 cells. DPM2, an 84 amino acid membrane protein expressed in the endoplasmic reticulum (ER), makes a complex with DPM1 that is essential for the ER localization and stable expression of DPM1. Moreover, DPM2 enhances binding of dolichol phosphate, a substrate of DPM synthase. Mammalian DPM1 is catalytic because a fusion protein of DPM1 that was stably expressed in the ER synthesized DPM without DPM2. Therefore, biosynthesis of DPM in mammalian cells is regulated by DPM2.

Full Text

The Full Text of this article is available as a PDF (527.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abeijon C., Hirschberg C. B. Topography of glycosylation reactions in the endoplasmic reticulum. Trends Biochem Sci. 1992 Jan;17(1):32–36. doi: 10.1016/0968-0004(92)90424-8. [DOI] [PubMed] [Google Scholar]
  2. Albright C. F., Orlean P., Robbins P. W. A 13-amino acid peptide in three yeast glycosyltransferases may be involved in dolichol recognition. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7366–7369. doi: 10.1073/pnas.86.19.7366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  4. Banerjee D. K. A recent approach to the study of dolichyl monophosphate topology in the rough endoplasmic reticulum. Acta Biochim Pol. 1994;41(3):275–280. [PubMed] [Google Scholar]
  5. Banerjee D. K. Amphomycin inhibits mannosylphosphoryldolichol synthesis by forming a complex with dolichylmonophosphate. J Biol Chem. 1989 Feb 5;264(4):2024–2028. [PubMed] [Google Scholar]
  6. Banerjee D. K., Kousvelari E. E., Baum B. J. cAMP-mediated protein phosphorylation of microsomal membranes increases mannosylphosphodolichol synthase activity. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6389–6393. doi: 10.1073/pnas.84.18.6389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Banerjee D. K., Scher M. G., Waechter C. J. Amphomycin: effect of the lipopeptide antibiotic on the glycosylation and extraction of dolichyl monophosphate in calf brain membranes. Biochemistry. 1981 Mar 17;20(6):1561–1568. doi: 10.1021/bi00509a024. [DOI] [PubMed] [Google Scholar]
  8. Beck P. J., Orlean P., Albright C., Robbins P. W., Gething M. J., Sambrook J. F. The Saccharomyces cerevisiae DPM1 gene encoding dolichol-phosphate-mannose synthase is able to complement a glycosylation-defective mammalian cell line. Mol Cell Biol. 1990 Sep;10(9):4612–4622. doi: 10.1128/mcb.10.9.4612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Camp L. A., Chauhan P., Farrar J. D., Lehrman M. A. Defective mannosylation of glycosylphosphatidylinositol in Lec35 Chinese hamster ovary cells. J Biol Chem. 1993 Mar 25;268(9):6721–6728. [PubMed] [Google Scholar]
  10. Carson D. D., Farrar J. D., Laidlaw J., Wright D. A. Selective activation of the N-glycosylation apparatus in uteri by estrogen. J Biol Chem. 1990 Feb 15;265(5):2947–2955. [PubMed] [Google Scholar]
  11. Chapman A., Fujimoto K., Kornfeld S. The primary glycosylation defect in class E Thy-1-negative mutant mouse lymphoma cells is an inability to synthesize dolichol-P-mannose. J Biol Chem. 1980 May 25;255(10):4441–4446. [PubMed] [Google Scholar]
  12. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Colussi P. A., Taron C. H., Mack J. C., Orlean P. Human and Saccharomyces cerevisiae dolichol phosphate mannose synthases represent two classes of the enzyme, but both function in Schizosaccharomyces pombe. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7873–7878. doi: 10.1073/pnas.94.15.7873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Czichi U., Lennarz W. J. Localization of the enzyme system for glycosylation of proteins via the lipid-linked pathway in rough endoplasmic reticulum. J Biol Chem. 1977 Nov 25;252(22):7901–7904. [PubMed] [Google Scholar]
  15. DeGasperi R., Thomas L. J., Sugiyama E., Chang H. M., Beck P. J., Orlean P., Albright C., Waneck G., Sambrook J. F., Warren C. D. Correction of a defect in mammalian GPI anchor biosynthesis by a transfected yeast gene. Science. 1990 Nov 16;250(4983):988–991. doi: 10.1126/science.1978413. [DOI] [PubMed] [Google Scholar]
  16. Englund P. T. The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors. Annu Rev Biochem. 1993;62:121–138. doi: 10.1146/annurev.bi.62.070193.001005. [DOI] [PubMed] [Google Scholar]
  17. Herscovics A., Orlean P. Glycoprotein biosynthesis in yeast. FASEB J. 1993 Apr 1;7(6):540–550. doi: 10.1096/fasebj.7.6.8472892. [DOI] [PubMed] [Google Scholar]
  18. Hirschberg C. B., Snider M. D. Topography of glycosylation in the rough endoplasmic reticulum and Golgi apparatus. Annu Rev Biochem. 1987;56:63–87. doi: 10.1146/annurev.bi.56.070187.000431. [DOI] [PubMed] [Google Scholar]
  19. Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol. 1967 Jun 14;26(2):365–369. doi: 10.1016/0022-2836(67)90307-5. [DOI] [PubMed] [Google Scholar]
  20. Jackson M. R., Nilsson T., Peterson P. A. Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J. 1990 Oct;9(10):3153–3162. doi: 10.1002/j.1460-2075.1990.tb07513.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kang M. S., Spencer J. P., Elbein A. D. Amphomycin inhibition of mannose and GlcNAc incorporation into lipid-linked saccharides. J Biol Chem. 1978 Dec 25;253(24):8860–8866. [PubMed] [Google Scholar]
  22. Kean E. L. Stimulation by dolichol phosphate-mannose and phospholipids of the biosynthesis of N-acetylglucosaminylpyrophosphoryl dolichol. J Biol Chem. 1985 Oct 15;260(23):12561–12571. [PubMed] [Google Scholar]
  23. Kelleher D. J., Kreibich G., Gilmore R. Oligosaccharyltransferase activity is associated with a protein complex composed of ribophorins I and II and a 48 kd protein. Cell. 1992 Apr 3;69(1):55–65. doi: 10.1016/0092-8674(92)90118-v. [DOI] [PubMed] [Google Scholar]
  24. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  25. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  26. Lennon G., Auffray C., Polymeropoulos M., Soares M. B. The I.M.A.G.E. Consortium: an integrated molecular analysis of genomes and their expression. Genomics. 1996 Apr 1;33(1):151–152. doi: 10.1006/geno.1996.0177. [DOI] [PubMed] [Google Scholar]
  27. Masaki R., Yamamoto A., Tashiro Y. Microsomal aldehyde dehydrogenase is localized to the endoplasmic reticulum via its carboxyl-terminal 35 amino acids. J Cell Biol. 1994 Sep;126(6):1407–1420. doi: 10.1083/jcb.126.6.1407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mazhari-Tabrizi R., Eckert V., Blank M., Müller R., Mumberg D., Funk M., Schwarz R. T. Cloning and functional expression of glycosyltransferases from parasitic protozoans by heterologous complementation in yeast: the dolichol phosphate mannose synthase from Trypanosoma brucei brucei. Biochem J. 1996 Jun 15;316(Pt 3):853–858. doi: 10.1042/bj3160853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Menon A. K., Mayor S., Schwarz R. T. Biosynthesis of glycosyl-phosphatidylinositol lipids in Trypanosoma brucei: involvement of mannosyl-phosphoryldolichol as the mannose donor. EMBO J. 1990 Dec;9(13):4249–4258. doi: 10.1002/j.1460-2075.1990.tb07873.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nakamura N., Inoue N., Watanabe R., Takahashi M., Takeda J., Stevens V. L., Kinoshita T. Expression cloning of PIG-L, a candidate N-acetylglucosaminyl-phosphatidylinositol deacetylase. J Biol Chem. 1997 Jun 20;272(25):15834–15840. doi: 10.1074/jbc.272.25.15834. [DOI] [PubMed] [Google Scholar]
  31. Ohishi K., Kurimoto Y., Inoue N., Endo Y., Takeda J., Kinoshita T. Cloning and characterization of the murine GPI anchor synthesis gene Pigf, a homologue of the human PIGF gene. Genomics. 1996 Jun 15;34(3):340–346. doi: 10.1006/geno.1996.0296. [DOI] [PubMed] [Google Scholar]
  32. Orlean P., Albright C., Robbins P. W. Cloning and sequencing of the yeast gene for dolichol phosphate mannose synthase, an essential protein. J Biol Chem. 1988 Nov 25;263(33):17499–17507. [PubMed] [Google Scholar]
  33. Orlean P. Dolichol phosphate mannose synthase is required in vivo for glycosyl phosphatidylinositol membrane anchoring, O mannosylation, and N glycosylation of protein in Saccharomyces cerevisiae. Mol Cell Biol. 1990 Nov;10(11):5796–5805. doi: 10.1128/mcb.10.11.5796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rosenwald A. G., Stoll J., Krag S. S. Regulation of glycosylation. Three enzymes compete for a common pool of dolichyl phosphate in vivo. J Biol Chem. 1990 Aug 25;265(24):14544–14553. [PubMed] [Google Scholar]
  35. Rost B., Casadio R., Fariselli P., Sander C. Transmembrane helices predicted at 95% accuracy. Protein Sci. 1995 Mar;4(3):521–533. doi: 10.1002/pro.5560040318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rush J. S., Waechter C. J. Transmembrane movement of a water-soluble analogue of mannosylphosphoryldolichol is mediated by an endoplasmic reticulum protein. J Cell Biol. 1995 Aug;130(3):529–536. doi: 10.1083/jcb.130.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Singh N., Singleton D., Tartakoff A. M. Anchoring and degradation of glycolipid-anchored membrane proteins by L929 versus by LM-TK- mouse fibroblasts: implications for anchor biosynthesis. Mol Cell Biol. 1991 May;11(5):2362–2374. doi: 10.1128/mcb.11.5.2362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Singh N., Tartakoff A. M. Two different mutants blocked in synthesis of dolichol-phosphoryl-mannose do not add glycophospholipid anchors to membrane proteins: quantitative correction of the phenotype of a CHO cell mutant with tunicamycin. Mol Cell Biol. 1991 Jan;11(1):391–400. doi: 10.1128/mcb.11.1.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stoll J., Robbins A. R., Krag S. S. Mutant of Chinese hamster ovary cells with altered mannose 6-phosphate receptor activity is unable to synthesize mannosylphosphoryldolichol. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2296–2300. doi: 10.1073/pnas.79.7.2296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Storrie B., Madden E. A. Isolation of subcellular organelles. Methods Enzymol. 1990;182:203–225. doi: 10.1016/0076-6879(90)82018-w. [DOI] [PubMed] [Google Scholar]
  41. Sugiyama E., DeGasperi R., Urakaze M., Chang H. M., Thomas L. J., Hyman R., Warren C. D., Yeh E. T. Identification of defects in glycosylphosphatidylinositol anchor biosynthesis in the Thy-1 expression mutants. J Biol Chem. 1991 Jul 5;266(19):12119–12122. [PubMed] [Google Scholar]
  42. Tomita S., Inoue N., Maeda Y., Ohishi K., Takeda J., Kinoshita T. A homologue of Saccharomyces cerevisiae Dpm1p is not sufficient for synthesis of dolichol-phosphate-mannose in mammalian cells. J Biol Chem. 1998 Apr 10;273(15):9249–9254. doi: 10.1074/jbc.273.15.9249. [DOI] [PubMed] [Google Scholar]
  43. Trowbridge I. S., Hyman R., Mazauskas C. The synthesis and properties of T25 blycoprotein in Thy-1-negative mutant lymphoma cells. Cell. 1978 May;14(1):21–32. doi: 10.1016/0092-8674(78)90297-0. [DOI] [PubMed] [Google Scholar]
  44. Uetsuki T., Naito A., Nagata S., Kaziro Y. Isolation and characterization of the human chromosomal gene for polypeptide chain elongation factor-1 alpha. J Biol Chem. 1989 Apr 5;264(10):5791–5798. [PubMed] [Google Scholar]
  45. Vidugiriene J., Menon A. K. Early lipid intermediates in glycosyl-phosphatidylinositol anchor assembly are synthesized in the ER and located in the cytoplasmic leaflet of the ER membrane bilayer. J Cell Biol. 1993 Jun;121(5):987–996. doi: 10.1083/jcb.121.5.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Ware F. E., Lehrman M. A. Expression cloning of a novel suppressor of the Lec15 and Lec35 glycosylation mutations of Chinese hamster ovary cells. J Biol Chem. 1996 Jun 14;271(24):13935–13938. doi: 10.1074/jbc.271.24.13935. [DOI] [PubMed] [Google Scholar]
  47. Ware F. E., Lehrman M. A. Expression cloning of a novel suppressor of the Lec15 and Lec35 glycosylation mutations of Chinese hamster ovary cells. J Biol Chem. 1998 May 22;273(21):13366–13366. [PubMed] [Google Scholar]
  48. Watanabe R., Kinoshita T., Masaki R., Yamamoto A., Takeda J., Inoue N. PIG-A and PIG-H, which participate in glycosylphosphatidylinositol anchor biosynthesis, form a protein complex in the endoplasmic reticulum. J Biol Chem. 1996 Oct 25;271(43):26868–26875. doi: 10.1074/jbc.271.43.26868. [DOI] [PubMed] [Google Scholar]
  49. Watanabe S., Kai N., Yasuda M., Kohmura N., Sanbo M., Mishina M., Yagi T. Stable production of mutant mice from double gene converted ES cells with puromycin and neomycin. Biochem Biophys Res Commun. 1995 Aug 4;213(1):130–137. doi: 10.1006/bbrc.1995.2107. [DOI] [PubMed] [Google Scholar]
  50. Zimmerman J. W., Robbins P. W. The hydrophobic domain of dolichyl-phosphate-mannose synthase is not essential for enzyme activity or growth in Saccharomyces cerevisiae. J Biol Chem. 1993 Aug 5;268(22):16746–16753. [PubMed] [Google Scholar]
  51. Zimmerman J. W., Specht C. A., Cazares B. X., Robbins P. W. The isolation of a Dol-P-Man synthase from Ustilago maydis that functions in Saccharomyces cerevisiae. Yeast. 1996 Jun 30;12(8):765–771. doi: 10.1002/(SICI)1097-0061(19960630)12:8%3C765::AID-YEA974%3E3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES