Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Sep 1;17(17):4943–4953. doi: 10.1093/emboj/17.17.4943

Clathrin coats at 21 A resolution: a cellular assembly designed to recycle multiple membrane receptors.

C J Smith 1, N Grigorieff 1, B M Pearse 1
PMCID: PMC1170823  PMID: 9724631

Abstract

We present a map at 21 A resolution of clathrin assembled into cages with the endocytic adaptor complex, AP-2. The map was obtained by cryo-electron microscopy and single-particle reconstruction. It reveals details of the packing of entire clathrin molecules as they interact to form a cage with two nested polyhedral layers. The proximal domains of each triskelion leg depart from a cage vertex in a skewed orientation, forming a slightly twisted bundle with three other leg domains. Thus, each triskelion contributes to two connecting edges of the polyhedral cage. The clathrin heavy chains continue inwards under the vertices with local 3-fold symmetry, the terminal domains contributing to 'hook-like' features which form an intermediate network making possible contacts with the surface presented by the inner adaptor shell. A node of density projecting inwards from the vertex may correspond to the C-termini of clathrin heavy chains which form a protrusion on free triskelions at the vertex. The inter-subunit interactions visible in this map provide a structural basis for considering the assembly of clathrin coats on a membrane and show the contacts which will need to be disrupted during disassembly.

Full Text

The Full Text of this article is available as a PDF (640.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahle S., Ungewickell E. Identification of a clathrin binding subunit in the HA2 adaptor protein complex. J Biol Chem. 1989 Nov 25;264(33):20089–20093. [PubMed] [Google Scholar]
  2. Bailey C. H., Chen M., Keller F., Kandel E. R. Serotonin-mediated endocytosis of apCAM: an early step of learning-related synaptic growth in Aplysia. Science. 1992 May 1;256(5057):645–649. doi: 10.1126/science.1585177. [DOI] [PubMed] [Google Scholar]
  3. Barouch W., Prasad K., Greene L. E., Eisenberg E. ATPase activity associated with the uncoating of clathrin baskets by Hsp70. J Biol Chem. 1994 Nov 18;269(46):28563–28568. [PubMed] [Google Scholar]
  4. Barouch W., Prasad K., Greene L., Eisenberg E. Auxilin-induced interaction of the molecular chaperone Hsc70 with clathrin baskets. Biochemistry. 1997 Apr 8;36(14):4303–4308. doi: 10.1021/bi962727z. [DOI] [PubMed] [Google Scholar]
  5. Blackbourn H. D., Jackson A. P. Plant clathrin heavy chain: sequence analysis and restricted localisation in growing pollen tubes. J Cell Sci. 1996 Apr;109(Pt 4):777–786. doi: 10.1242/jcs.109.4.777. [DOI] [PubMed] [Google Scholar]
  6. Böttcher B., Wynne S. A., Crowther R. A. Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature. 1997 Mar 6;386(6620):88–91. doi: 10.1038/386088a0. [DOI] [PubMed] [Google Scholar]
  7. Campbell C., Squicciarini J., Shia M., Pilch P. F., Fine R. E. Identification of a protein kinase as an intrinsic component of rat liver coated vesicles. Biochemistry. 1984 Sep 11;23(19):4420–4426. doi: 10.1021/bi00314a028. [DOI] [PubMed] [Google Scholar]
  8. Crowther R. A., Finch J. T., Pearse B. M. On the structure of coated vesicles. J Mol Biol. 1976 Jun 5;103(4):785–798. doi: 10.1016/0022-2836(76)90209-6. [DOI] [PubMed] [Google Scholar]
  9. Crowther R. A., Henderson R., Smith J. M. MRC image processing programs. J Struct Biol. 1996 Jan-Feb;116(1):9–16. doi: 10.1006/jsbi.1996.0003. [DOI] [PubMed] [Google Scholar]
  10. Crowther R. A., Pearse B. M. Assembly and packing of clathrin into coats. J Cell Biol. 1981 Dec;91(3 Pt 1):790–797. doi: 10.1083/jcb.91.3.790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dell'Angelica E. C., Klumperman J., Stoorvogel W., Bonifacino J. S. Association of the AP-3 adaptor complex with clathrin. Science. 1998 Apr 17;280(5362):431–434. doi: 10.1126/science.280.5362.431. [DOI] [PubMed] [Google Scholar]
  12. Dubochet J., Adrian M., Chang J. J., Homo J. C., Lepault J., McDowall A. W., Schultz P. Cryo-electron microscopy of vitrified specimens. Q Rev Biophys. 1988 May;21(2):129–228. doi: 10.1017/s0033583500004297. [DOI] [PubMed] [Google Scholar]
  13. Frank J., Radermacher M., Penczek P., Zhu J., Li Y., Ladjadj M., Leith A. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol. 1996 Jan-Feb;116(1):190–199. doi: 10.1006/jsbi.1996.0030. [DOI] [PubMed] [Google Scholar]
  14. Gallusser A., Kirchhausen T. The beta 1 and beta 2 subunits of the AP complexes are the clathrin coat assembly components. EMBO J. 1993 Dec 15;12(13):5237–5244. doi: 10.1002/j.1460-2075.1993.tb06219.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goodman O. B., Jr, Krupnick J. G., Gurevich V. V., Benovic J. L., Keen J. H. Arrestin/clathrin interaction. Localization of the arrestin binding locus to the clathrin terminal domain. J Biol Chem. 1997 Jun 6;272(23):15017–15022. doi: 10.1074/jbc.272.23.15017. [DOI] [PubMed] [Google Scholar]
  16. Grigorieff N. Three-dimensional structure of bovine NADH:ubiquinone oxidoreductase (complex I) at 22 A in ice. J Mol Biol. 1998 Apr 17;277(5):1033–1046. doi: 10.1006/jmbi.1998.1668. [DOI] [PubMed] [Google Scholar]
  17. Harauz G., Ottensmeyer F. P. Nucleosome reconstruction via phosphorus mapping. Science. 1984 Nov 23;226(4677):936–940. doi: 10.1126/science.6505674. [DOI] [PubMed] [Google Scholar]
  18. Heuser J. E., Keen J. Deep-etch visualization of proteins involved in clathrin assembly. J Cell Biol. 1988 Sep;107(3):877–886. doi: 10.1083/jcb.107.3.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Heuser J. E., Reese T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol. 1973 May;57(2):315–344. doi: 10.1083/jcb.57.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Heuser J. Three-dimensional visualization of coated vesicle formation in fibroblasts. J Cell Biol. 1980 Mar;84(3):560–583. doi: 10.1083/jcb.84.3.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kirchhausen T., Harrison S. C., Heuser J. Configuration of clathrin trimers: evidence from electron microscopy. J Ultrastruct Mol Struct Res. 1986 Mar;94(3):199–208. doi: 10.1016/0889-1605(86)90067-4. [DOI] [PubMed] [Google Scholar]
  22. Kirchhausen T., Toyoda T. Immunoelectron microscopic evidence for the extended conformation of light chains in clathrin trimers. J Biol Chem. 1993 May 15;268(14):10268–10273. [PubMed] [Google Scholar]
  23. Lemmon S. K., Pellicena-Palle A., Conley K., Freund C. L. Sequence of the clathrin heavy chain from Saccharomyces cerevisiae and requirement of the COOH terminus for clathrin function. J Cell Biol. 1991 Jan;112(1):65–80. doi: 10.1083/jcb.112.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Liu S. H., Wong M. L., Craik C. S., Brodsky F. M. Regulation of clathrin assembly and trimerization defined using recombinant triskelion hubs. Cell. 1995 Oct 20;83(2):257–267. doi: 10.1016/0092-8674(95)90167-1. [DOI] [PubMed] [Google Scholar]
  25. Maycox P. R., Link E., Reetz A., Morris S. A., Jahn R. Clathrin-coated vesicles in nervous tissue are involved primarily in synaptic vesicle recycling. J Cell Biol. 1992 Sep;118(6):1379–1388. doi: 10.1083/jcb.118.6.1379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McLauchlan H., Newell J., Morrice N., Osborne A., West M., Smythe E. A novel role for Rab5-GDI in ligand sequestration into clathrin-coated pits. Curr Biol. 1998 Jan 1;8(1):34–45. doi: 10.1016/s0960-9822(98)70018-1. [DOI] [PubMed] [Google Scholar]
  27. Novick P., Zerial M. The diversity of Rab proteins in vesicle transport. Curr Opin Cell Biol. 1997 Aug;9(4):496–504. doi: 10.1016/s0955-0674(97)80025-7. [DOI] [PubMed] [Google Scholar]
  28. Näthke I. S., Heuser J., Lupas A., Stock J., Turck C. W., Brodsky F. M. Folding and trimerization of clathrin subunits at the triskelion hub. Cell. 1992 Mar 6;68(5):899–910. doi: 10.1016/0092-8674(92)90033-9. [DOI] [PubMed] [Google Scholar]
  29. Pearse B. M., Robinson M. S. Purification and properties of 100-kd proteins from coated vesicles and their reconstitution with clathrin. EMBO J. 1984 Sep;3(9):1951–1957. doi: 10.1002/j.1460-2075.1984.tb02075.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Penczek P. A., Grassucci R. A., Frank J. The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles. Ultramicroscopy. 1994 Mar;53(3):251–270. doi: 10.1016/0304-3991(94)90038-8. [DOI] [PubMed] [Google Scholar]
  31. Penczek P., Radermacher M., Frank J. Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy. 1992 Jan;40(1):33–53. [PubMed] [Google Scholar]
  32. Pishvaee B., Munn A., Payne G. S. A novel structural model for regulation of clathrin function. EMBO J. 1997 May 1;16(9):2227–2239. doi: 10.1093/emboj/16.9.2227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Prior I. A., Clague M. J. Glutamate uptake occurs at an early stage of synaptic vesicle recycling. Curr Biol. 1997 May 1;7(5):353–356. doi: 10.1016/s0960-9822(06)00159-x. [DOI] [PubMed] [Google Scholar]
  34. ROTH T. F., PORTER K. R. YOLK PROTEIN UPTAKE IN THE OOCYTE OF THE MOSQUITO AEDES AEGYPTI. L. J Cell Biol. 1964 Feb;20:313–332. doi: 10.1083/jcb.20.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Radermacher M. Three-dimensional reconstruction of single particles from random and nonrandom tilt series. J Electron Microsc Tech. 1988 Aug;9(4):359–394. doi: 10.1002/jemt.1060090405. [DOI] [PubMed] [Google Scholar]
  36. Schlossman D. M., Schmid S. L., Braell W. A., Rothman J. E. An enzyme that removes clathrin coats: purification of an uncoating ATPase. J Cell Biol. 1984 Aug;99(2):723–733. doi: 10.1083/jcb.99.2.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schmid S. L. Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu Rev Biochem. 1997;66:511–548. doi: 10.1146/annurev.biochem.66.1.511. [DOI] [PubMed] [Google Scholar]
  38. Solomonia R. O., McCabe B. J., Jackson A. P., Horn G. Clathrin proteins and recognition memory. Neuroscience. 1997 Sep;80(1):59–67. doi: 10.1016/s0306-4522(97)00123-1. [DOI] [PubMed] [Google Scholar]
  39. Szilágyi J. F., Berriman J. Herpes simplex virus L particles contain spherical membrane-enclosed inclusion vesicles. J Gen Virol. 1994 Jul;75(Pt 7):1749–1753. doi: 10.1099/0022-1317-75-7-1749. [DOI] [PubMed] [Google Scholar]
  40. Ungewickell E. Biochemical and immunological studies on clathrin light chains and their binding sites on clathrin triskelions. EMBO J. 1983;2(8):1401–1408. doi: 10.1002/j.1460-2075.1983.tb01598.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ungewickell E., Branton D. Assembly units of clathrin coats. Nature. 1981 Jan 29;289(5796):420–422. doi: 10.1038/289420a0. [DOI] [PubMed] [Google Scholar]
  42. Ungewickell E., Ungewickell H. Bovine brain clathrin light chains impede heavy chain assembly in vitro. J Biol Chem. 1991 Jul 5;266(19):12710–12714. [PubMed] [Google Scholar]
  43. Ungewickell E., Ungewickell H., Holstein S. E., Lindner R., Prasad K., Barouch W., Martin B., Greene L. E., Eisenberg E. Role of auxilin in uncoating clathrin-coated vesicles. Nature. 1995 Dec 7;378(6557):632–635. doi: 10.1038/378632a0. [DOI] [PubMed] [Google Scholar]
  44. Vigers G. P., Crowther R. A., Pearse B. M. Location of the 100 kd-50 kd accessory proteins in clathrin coats. EMBO J. 1986 Sep;5(9):2079–2085. doi: 10.1002/j.1460-2075.1986.tb04469.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Vigers G. P., Crowther R. A., Pearse B. M. Three-dimensional structure of clathrin cages in ice. EMBO J. 1986 Mar;5(3):529–534. doi: 10.1002/j.1460-2075.1986.tb04242.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Ybe J. A., Greene B., Liu S. H., Pley U., Parham P., Brodsky F. M. Clathrin self-assembly is regulated by three light-chain residues controlling the formation of critical salt bridges. EMBO J. 1998 Aug 10;17(5):1297–1303. doi: 10.1093/emboj/17.5.1297. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES