Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Sep 1;17(17):5112–5119. doi: 10.1093/emboj/17.17.5112

Conformational changes necessary for gene regulation by Tet repressor assayed by reversible disulfide bond formation.

B Tiebel 1, L M Aung-Hilbrich 1, D Schnappinger 1, W Hillen 1
PMCID: PMC1170839  PMID: 9724647

Abstract

We constructed and characterized four Tet repressor (TetR) variants with engineered cysteine residues which can form disulfide bonds and are located in regions where conformational changes during induction by tetracycline (tc) might occur. All TetR mutants show nearly wild-type activities in vivo, and the reduced proteins also show wild-type activities in vitro. Complete and reversible disulfide bond formation was achieved in vitro for all four mutants. The disulfide bond in NC18RC94 immobilizes the DNA reading head with respect to the protein core and prevents operator binding. Formation of this disulfide bond is possible only in the tc-bound, but not in the operator-bound conformation. Thus, these residues must have different conformations when bound to these ligands. The disulfide bonds in DC106PC159' and EC107NC165' immobilize the variable loop between alpha-helices 8 and 9 located near the tc-binding pocket. A faster rate of disulfide formation in the operator-bound conformation and a lack of induction after disulfide formation show that the variable loop is located closer to the protein core in the operator-bound conformation and that a movement is necessary for induction. The disulfide bond in RC195VC199' connects alpha-helices 10 and 10' of the two subunits in the dimer and is only formed in the tc-bound conformation. The oxidized protein shows reduced operator binding. Thus, this bond prevents formation of the operator-bound conformation. The detection of conformational changes in three different regions is the first biochemical evidence for induction-associated global internal movements in TetR.

Full Text

The Full Text of this article is available as a PDF (356.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barford D., Johnson L. N. The allosteric transition of glycogen phosphorylase. Nature. 1989 Aug 24;340(6235):609–616. doi: 10.1038/340609a0. [DOI] [PubMed] [Google Scholar]
  2. Beck C. F., Mutzel R., Barbé J., Müller W. A multifunctional gene (tetR) controls Tn10-encoded tetracycline resistance. J Bacteriol. 1982 May;150(2):633–642. doi: 10.1128/jb.150.2.633-642.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berens C., Schnappinger D., Hillen W. The role of the variable region in Tet repressor for inducibility by tetracycline. J Biol Chem. 1997 Mar 14;272(11):6936–6942. doi: 10.1074/jbc.272.11.6936. [DOI] [PubMed] [Google Scholar]
  4. Careaga C. L., Falke J. J. Thermal motions of surface alpha-helices in the D-galactose chemosensory receptor. Detection by disulfide trapping. J Mol Biol. 1992 Aug 20;226(4):1219–1235. doi: 10.1016/0022-2836(92)91063-u. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Careaga C. L., Sutherland J., Sabeti J., Falke J. J. Large amplitude twisting motions of an interdomain hinge: a disulfide trapping study of the galactose-glucose binding protein. Biochemistry. 1995 Mar 7;34(9):3048–3055. doi: 10.1021/bi00009a036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chervitz S. A., Falke J. J. Lock on/off disulfides identify the transmembrane signaling helix of the aspartate receptor. J Biol Chem. 1995 Oct 13;270(41):24043–24053. doi: 10.1074/jbc.270.41.24043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cooper A., McAlpine A., Stockley P. G. Calorimetric studies of the energetics of protein-DNA interactions in the E. coli methionine repressor (MetJ) system. FEBS Lett. 1994 Jul 4;348(1):41–45. doi: 10.1016/0014-5793(94)00579-6. [DOI] [PubMed] [Google Scholar]
  8. Ettner N., Müller G., Berens C., Backes H., Schnappinger D., Schreppel T., Pfleiderer K., Hillen W. Fast large-scale purification of tetracycline repressor variants from overproducing Escherichia coli strains. J Chromatogr A. 1996 Aug 23;742(1-2):95–105. doi: 10.1016/0021-9673(96)00232-4. [DOI] [PubMed] [Google Scholar]
  9. Falke J. J., Koshland D. E., Jr Global flexibility in a sensory receptor: a site-directed cross-linking approach. Science. 1987 Sep 25;237(4822):1596–1600. doi: 10.1126/science.2820061. [DOI] [PubMed] [Google Scholar]
  10. Fontana A. Analysis and modulation of protein stability. Curr Opin Biotechnol. 1991 Aug;2(4):551–560. doi: 10.1016/0958-1669(91)90080-o. [DOI] [PubMed] [Google Scholar]
  11. Gossen M., Freundlieb S., Bender G., Müller G., Hillen W., Bujard H. Transcriptional activation by tetracyclines in mammalian cells. Science. 1995 Jun 23;268(5218):1766–1769. doi: 10.1126/science.7792603. [DOI] [PubMed] [Google Scholar]
  12. Hansen D., Altschmied L., Hillen W. Engineered Tet repressor mutants with single tryptophan residues as fluorescent probes. Solvent accessibilities of DNA and inducer binding sites and interaction with tetracycline. J Biol Chem. 1987 Oct 15;262(29):14030–14035. [PubMed] [Google Scholar]
  13. Hecht B., Müller G., Hillen W. Noninducible Tet repressor mutations map from the operator binding motif to the C terminus. J Bacteriol. 1993 Feb;175(4):1206–1210. doi: 10.1128/jb.175.4.1206-1210.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hillen W., Berens C. Mechanisms underlying expression of Tn10 encoded tetracycline resistance. Annu Rev Microbiol. 1994;48:345–369. doi: 10.1146/annurev.mi.48.100194.002021. [DOI] [PubMed] [Google Scholar]
  15. Hinrichs W., Kisker C., Düvel M., Müller A., Tovar K., Hillen W., Saenger W. Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance. Science. 1994 Apr 15;264(5157):418–420. doi: 10.1126/science.8153629. [DOI] [PubMed] [Google Scholar]
  16. Hughson A. G., Lee G. F., Hazelbauer G. L. Analysis of protein structure in intact cells: crosslinking in vivo between introduced cysteines in the transmembrane domain of a bacterial chemoreceptor. Protein Sci. 1997 Feb;6(2):315–322. doi: 10.1002/pro.5560060206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kisker C., Hinrichs W., Tovar K., Hillen W., Saenger W. The complex formed between Tet repressor and tetracycline-Mg2+ reveals mechanism of antibiotic resistance. J Mol Biol. 1995 Mar 24;247(2):260–280. doi: 10.1006/jmbi.1994.0138. [DOI] [PubMed] [Google Scholar]
  18. Kolb A., Busby S., Buc H., Garges S., Adhya S. Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem. 1993;62:749–795. doi: 10.1146/annurev.bi.62.070193.003533. [DOI] [PubMed] [Google Scholar]
  19. Landt O., Grunert H. P., Hahn U. A general method for rapid site-directed mutagenesis using the polymerase chain reaction. Gene. 1990 Nov 30;96(1):125–128. doi: 10.1016/0378-1119(90)90351-q. [DOI] [PubMed] [Google Scholar]
  20. Lee G. F., Lebert M. R., Lilly A. A., Hazelbauer G. L. Transmembrane signaling characterized in bacterial chemoreceptors by using sulfhydryl cross-linking in vivo. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3391–3395. doi: 10.1073/pnas.92.8.3391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lewis M., Chang G., Horton N. C., Kercher M. A., Pace H. C., Schumacher M. A., Brennan R. G., Lu P. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science. 1996 Mar 1;271(5253):1247–1254. doi: 10.1126/science.271.5253.1247. [DOI] [PubMed] [Google Scholar]
  22. Lim H. M. Analysis of subunit interaction by introducing disulfide bonds at the dimerization domain of Hin recombinase. J Biol Chem. 1994 Dec 9;269(49):31134–31142. [PubMed] [Google Scholar]
  23. Matsumura M., Matthews B. W. Stabilization of functional proteins by introduction of multiple disulfide bonds. Methods Enzymol. 1991;202:336–356. doi: 10.1016/0076-6879(91)02018-5. [DOI] [PubMed] [Google Scholar]
  24. Müller G., Hecht B., Helbl V., Hinrichs W., Saenger W., Hillen W. Characterization of non-inducible Tet repressor mutants suggests conformational changes necessary for induction. Nat Struct Biol. 1995 Aug;2(8):693–703. doi: 10.1038/nsb0895-693. [DOI] [PubMed] [Google Scholar]
  25. Takahashi M., Altschmied L., Hillen W. Kinetic and equilibrium characterization of the Tet repressor-tetracycline complex by fluorescence measurements. Evidence for divalent metal ion requirement and energy transfer. J Mol Biol. 1986 Feb 5;187(3):341–348. doi: 10.1016/0022-2836(86)90437-7. [DOI] [PubMed] [Google Scholar]
  26. Thornton J. M. Disulphide bridges in globular proteins. J Mol Biol. 1981 Sep 15;151(2):261–287. doi: 10.1016/0022-2836(81)90515-5. [DOI] [PubMed] [Google Scholar]
  27. Zhang R. G., Joachimiak A., Lawson C. L., Schevitz R. W., Otwinowski Z., Sigler P. B. The crystal structure of trp aporepressor at 1.8 A shows how binding tryptophan enhances DNA affinity. Nature. 1987 Jun 18;327(6123):591–597. doi: 10.1038/327591a0. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES