Abstract
The mechanism by which ion-flux through the membrane-bound motor module (F0) induces rotational torque, driving the rotation of the gamma subunit, was probed with a Na+-translocating hybrid ATP synthase. The ATP-dependent occlusion of 1 (22)Na+ per ATP synthase persisted after modification of the c subunit ring with dicyclohexylcarbodiimide (DCCD), when 22Na+ was added first and ATP second, but not if the order of addition was reversed. These results support the model of ATP-driven rotation of the c subunit oligomer (rotor) versus subunit a (stator) that stops when either a 22Na+-loaded or a DCCD-modified rotor subunit reaches the Na+-impermeable stator. The ATP synthase with a Na+-permeable stator catalyzed 22Na+out/Na+in-exchange after reconstitution into proteoliposomes, which was not significantly affected by DCCD modification of the c subunit oligomer, but was abolished by the additional presence of ATP or by a membrane potential (DeltaPsi) of 90 mV. We propose that in the idling mode of the motor, Na+ ions are shuttled across the membrane by limited back and forth movements of the rotor against the stator. This motional flexibility is arrested if either ATP or DeltaPsi induces the switch from idling into a directed rotation. The Propionigenium modestum ATP synthase catalyzed ATP formation with DeltaPsi of 60-125 mV but not with DeltapNa+ of 195 mV. These results demonstrate that electric forces are essential for ATP synthesis and lead to a new concept of rotary-torque generation in the ATP synthase motor.
Full Text
The Full Text of this article is available as a PDF (378.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrahams J. P., Leslie A. G., Lutter R., Walker J. E. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994 Aug 25;370(6491):621–628. doi: 10.1038/370621a0. [DOI] [PubMed] [Google Scholar]
- Birkenhäger R., Hoppert M., Deckers-Hebestreit G., Mayer F., Altendorf K. The F0 complex of the Escherichia coli ATP synthase. Investigation by electron spectroscopic imaging and immunoelectron microscopy. Eur J Biochem. 1995 May 15;230(1):58–67. [PubMed] [Google Scholar]
- Bokranz M., Mörschel E., Kröger A. Phosphorylation and phosphate-ATP exchange catalyzed by the ATP synthase isolated from Wolinella succinogenes. Biochim Biophys Acta. 1985 Dec 16;810(3):332–339. doi: 10.1016/0005-2728(85)90218-x. [DOI] [PubMed] [Google Scholar]
- Boyer P. D. The binding change mechanism for ATP synthase--some probabilities and possibilities. Biochim Biophys Acta. 1993 Jan 8;1140(3):215–250. doi: 10.1016/0005-2728(93)90063-l. [DOI] [PubMed] [Google Scholar]
- Capaldi R. A., Aggeler R., Wilkens S., Grüber G. Structural changes in the gamma and epsilon subunits of the Escherichia coli F1F0-type ATPase during energy coupling. J Bioenerg Biomembr. 1996 Oct;28(5):397–401. doi: 10.1007/BF02113980. [DOI] [PubMed] [Google Scholar]
- Deckers-Hebestreit G., Altendorf K. The F0F1-type ATP synthases of bacteria: structure and function of the F0 complex. Annu Rev Microbiol. 1996;50:791–824. doi: 10.1146/annurev.micro.50.1.791. [DOI] [PubMed] [Google Scholar]
- Dimroth P., Kaim G., Matthey U. The motor of the ATP synthase. Biochim Biophys Acta. 1998 Jun 10;1365(1-2):87–92. doi: 10.1016/s0005-2728(98)00047-4. [DOI] [PubMed] [Google Scholar]
- Dimroth P. Primary sodium ion translocating enzymes. Biochim Biophys Acta. 1997 Jan 16;1318(1-2):11–51. doi: 10.1016/s0005-2728(96)00127-2. [DOI] [PubMed] [Google Scholar]
- Dmitriev O., Deckers-Hebestreit G., Altendorf K. ATP synthesis energized by delta pNa and delta psi in proteoliposomes containing the F0F1-ATPase from Propionigenium modestum. J Biol Chem. 1993 Jul 15;268(20):14776–14780. [PubMed] [Google Scholar]
- Duncan T. M., Bulygin V. V., Zhou Y., Hutcheon M. L., Cross R. L. Rotation of subunits during catalysis by Escherichia coli F1-ATPase. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10964–10968. doi: 10.1073/pnas.92.24.10964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elston T. C., Oster G. Protein turbines. I: The bacterial flagellar motor. Biophys J. 1997 Aug;73(2):703–721. doi: 10.1016/S0006-3495(97)78104-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elston T., Wang H., Oster G. Energy transduction in ATP synthase. Nature. 1998 Jan 29;391(6666):510–513. doi: 10.1038/35185. [DOI] [PubMed] [Google Scholar]
- Futai M., Noumi T., Maeda M. ATP synthase (H+-ATPase): results by combined biochemical and molecular biological approaches. Annu Rev Biochem. 1989;58:111–136. doi: 10.1146/annurev.bi.58.070189.000551. [DOI] [PubMed] [Google Scholar]
- Girvin M. E., Rastogi V. K., Abildgaard F., Markley J. L., Fillingame R. H. Solution structure of the transmembrane H+-transporting subunit c of the F1F0 ATP synthase. Biochemistry. 1998 Jun 23;37(25):8817–8824. doi: 10.1021/bi980511m. [DOI] [PubMed] [Google Scholar]
- Jagendorf A. T., Uribe E. ATP formation caused by acid-base transition of spinach chloroplasts. Proc Natl Acad Sci U S A. 1966 Jan;55(1):170–177. doi: 10.1073/pnas.55.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones P. C., Jiang W., Fillingame R. H. Arrangement of the multicopy H+-translocating subunit c in the membrane sector of the Escherichia coli F1F0 ATP synthase. J Biol Chem. 1998 Jul 3;273(27):17178–17185. doi: 10.1074/jbc.273.27.17178. [DOI] [PubMed] [Google Scholar]
- Junesch U., Gräber P. The rate of ATP-synthesis as a function of delta pH and delta psi catalyzed by the active, reduced H(+)-ATPase from chloroplasts. FEBS Lett. 1991 Dec 9;294(3):275–278. doi: 10.1016/0014-5793(91)81447-g. [DOI] [PubMed] [Google Scholar]
- Junge W., Lill H., Engelbrecht S. ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem Sci. 1997 Nov;22(11):420–423. doi: 10.1016/s0968-0004(97)01129-8. [DOI] [PubMed] [Google Scholar]
- Jäger H., Birkenhäger R., Stalz W. D., Altendorf K., Deckers-Hebestreit G. Topology of subunit a of the Escherichia coli ATP synthase. Eur J Biochem. 1998 Jan 15;251(1-2):122–132. doi: 10.1046/j.1432-1327.1998.2510122.x. [DOI] [PubMed] [Google Scholar]
- Kaim G., Dimroth P. A double mutation in subunit c of the Na(+)-specific F1F0-ATPase of Propionigenium modestum results in a switch from Na+ to H(+)-coupled ATP synthesis in the Escherichia coli host cells. J Mol Biol. 1995 Nov 10;253(5):726–738. doi: 10.1006/jmbi.1995.0586. [DOI] [PubMed] [Google Scholar]
- Kaim G., Dimroth P. A triple mutation in the a subunit of the Escherichia coli/Propionigenium modestum F1Fo ATPase hybrid causes a switch from Na+ stimulation to Na+ inhibition. Biochemistry. 1998 Mar 31;37(13):4626–4634. doi: 10.1021/bi973022f. [DOI] [PubMed] [Google Scholar]
- Kaim G., Dimroth P. ATP synthesis by the F1Fo ATP synthase of Escherichia coli is obligatorily dependent on the electric potential. FEBS Lett. 1998 Aug 28;434(1-2):57–60. doi: 10.1016/s0014-5793(98)00969-7. [DOI] [PubMed] [Google Scholar]
- Kaim G., Dimroth P. Construction, expression and characterization of a plasmid-encoded Na(+)-specific ATPase hybrid consisting of Propionigenium modestum F0-ATPase and Escherichia coli F1-ATPase. Eur J Biochem. 1994 Jun 1;222(2):615–623. doi: 10.1111/j.1432-1033.1994.tb18904.x. [DOI] [PubMed] [Google Scholar]
- Kaim G., Dimroth P. Formation of a functionally active sodium-translocating hybrid F1F0 ATPase in Escherichia coli by homologous recombination. Eur J Biochem. 1993 Dec 15;218(3):937–944. doi: 10.1111/j.1432-1033.1993.tb18450.x. [DOI] [PubMed] [Google Scholar]
- Kaim G., Matthey U., Dimroth P. Mode of interaction of the single a subunit with the multimeric c subunits during the translocation of the coupling ions by F1F0 ATPases. EMBO J. 1998 Feb 2;17(3):688–695. doi: 10.1093/emboj/17.3.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaim G., Wehrle F., Gerike U., Dimroth P. Molecular basis for the coupling ion selectivity of F1F0 ATP synthases: probing the liganding groups for Na+ and Li+ in the c subunit of the ATP synthase from Propionigenium modestum. Biochemistry. 1997 Jul 29;36(30):9185–9194. doi: 10.1021/bi970831q. [DOI] [PubMed] [Google Scholar]
- Kato-Yamada Y., Noji H., Yasuda R., Kinosita K., Jr, Yoshida M. Direct observation of the rotation of epsilon subunit in F1-ATPase. J Biol Chem. 1998 Jul 31;273(31):19375–19377. doi: 10.1074/jbc.273.31.19375. [DOI] [PubMed] [Google Scholar]
- Kluge C., Dimroth P. Kinetics of inactivation of the F1Fo ATPase of Propionigenium modestum by dicyclohexylcarbodiimide in relationship to H+ and Na+ concentration: probing the binding site for the coupling ions. Biochemistry. 1993 Oct 5;32(39):10378–10386. doi: 10.1021/bi00090a013. [DOI] [PubMed] [Google Scholar]
- Kluge C., Dimroth P. Studies on Na+ and H+ translocation through the Fo part of the Na(+)-translocating F1Fo ATPase from Propionigenium modestum: discovery of a membrane potential dependent step. Biochemistry. 1992 Dec 22;31(50):12665–12672. doi: 10.1021/bi00165a017. [DOI] [PubMed] [Google Scholar]
- Laubinger W., Dimroth P. Characterization of the ATP synthase of Propionigenium modestum as a primary sodium pump. Biochemistry. 1988 Sep 20;27(19):7531–7537. doi: 10.1021/bi00419a053. [DOI] [PubMed] [Google Scholar]
- Laubinger W., Dimroth P. Characterization of the Na+-stimulated ATPase of Propionigenium modestum as an enzyme of the F1F0 type. Eur J Biochem. 1987 Oct 15;168(2):475–480. doi: 10.1111/j.1432-1033.1987.tb13441.x. [DOI] [PubMed] [Google Scholar]
- Laubinger W., Dimroth P. The sodium ion translocating adenosinetriphosphatase of Propionigenium modestum pumps protons at low sodium ion concentrations. Biochemistry. 1989 Sep 5;28(18):7194–7198. doi: 10.1021/bi00444a010. [DOI] [PubMed] [Google Scholar]
- Lill H., Hensel F., Junge W., Engelbrecht S. Cross-linking of engineered subunit delta to (alphabeta)3 in chloroplast F-ATPase. J Biol Chem. 1996 Dec 20;271(51):32737–32742. doi: 10.1074/jbc.271.51.32737. [DOI] [PubMed] [Google Scholar]
- Long J. C., Wang S., Vik S. B. Membrane topology of subunit a of the F1F0 ATP synthase as determined by labeling of unique cysteine residues. J Biol Chem. 1998 Jun 26;273(26):16235–16240. doi: 10.1074/jbc.273.26.16235. [DOI] [PubMed] [Google Scholar]
- Noji H., Yasuda R., Yoshida M., Kinosita K., Jr Direct observation of the rotation of F1-ATPase. Nature. 1997 Mar 20;386(6622):299–302. doi: 10.1038/386299a0. [DOI] [PubMed] [Google Scholar]
- Ogilvie I., Aggeler R., Capaldi R. A. Cross-linking of the delta subunit to one of the three alpha subunits has no effect on functioning, as expected if delta is a part of the stator that links the F1 and F0 parts of the Escherichia coli ATP synthase. J Biol Chem. 1997 Jun 27;272(26):16652–16656. doi: 10.1074/jbc.272.26.16652. [DOI] [PubMed] [Google Scholar]
- Rottenberg H. The measurement of membrane potential and deltapH in cells, organelles, and vesicles. Methods Enzymol. 1979;55:547–569. doi: 10.1016/0076-6879(79)55066-6. [DOI] [PubMed] [Google Scholar]
- Sabbert D., Engelbrecht S., Junge W. Intersubunit rotation in active F-ATPase. Nature. 1996 Jun 13;381(6583):623–625. doi: 10.1038/381623a0. [DOI] [PubMed] [Google Scholar]
- Singh S., Turina P., Bustamante C. J., Keller D. J., Capaldi R. Topographical structure of membrane-bound Escherichia coli F1F0 ATP synthase in aqueous buffer. FEBS Lett. 1996 Nov 11;397(1):30–34. doi: 10.1016/s0014-5793(96)01127-1. [DOI] [PubMed] [Google Scholar]
- Slooten L., Vandenbranden S. ATP-synthesis by proteoliposomes incorporating Rhodospirillum rubrum F0F1 as measured with firefly luciferase: dependence on delta psi and delta pH. Biochim Biophys Acta. 1989 Sep 28;976(2-3):150–160. doi: 10.1016/s0005-2728(89)80224-5. [DOI] [PubMed] [Google Scholar]
- Steffens K., Hoppe J., Altendorf K. F0 part of the ATP synthase from Escherichia coli. Influence of subunits a, and b, on the structure of subunit c. Eur J Biochem. 1988 Jan 4;170(3):627–630. doi: 10.1111/j.1432-1033.1988.tb13743.x. [DOI] [PubMed] [Google Scholar]
- Takeyasu K., Omote H., Nettikadan S., Tokumasu F., Iwamoto-Kihara A., Futai M. Molecular imaging of Escherichia coli F0F1-ATPase in reconstituted membranes using atomic force microscopy. FEBS Lett. 1996 Aug 26;392(2):110–113. doi: 10.1016/0014-5793(96)00796-x. [DOI] [PubMed] [Google Scholar]
- Thayer W. S., Hinkle P. C. Synthesis of adenosine triphosphate by an artificially imposed electrochemical proton gradient in bovine heart submitochondrial particles. J Biol Chem. 1975 Jul 25;250(14):5330–5335. [PubMed] [Google Scholar]
- Turina P., Melandri B. A., Gräber P. ATP synthesis in chromatophores driven by artificially induced ion gradients. Eur J Biochem. 1991 Feb 26;196(1):225–229. doi: 10.1111/j.1432-1033.1991.tb15808.x. [DOI] [PubMed] [Google Scholar]
- Valiyaveetil F. I., Fillingame R. H. On the role of Arg-210 and Glu-219 of subunit a in proton translocation by the Escherichia coli F0F1-ATP synthase. J Biol Chem. 1997 Dec 19;272(51):32635–32641. doi: 10.1074/jbc.272.51.32635. [DOI] [PubMed] [Google Scholar]
- Valiyaveetil F. I., Fillingame R. H. Transmembrane topography of subunit a in the Escherichia coli F1F0 ATP synthase. J Biol Chem. 1998 Jun 26;273(26):16241–16247. doi: 10.1074/jbc.273.26.16241. [DOI] [PubMed] [Google Scholar]
- Vik S. B., Antonio B. J. A mechanism of proton translocation by F1F0 ATP synthases suggested by double mutants of the a subunit. J Biol Chem. 1994 Dec 2;269(48):30364–30369. [PubMed] [Google Scholar]
- Weber J., Senior A. E. Catalytic mechanism of F1-ATPase. Biochim Biophys Acta. 1997 Mar 28;1319(1):19–58. doi: 10.1016/s0005-2728(96)00121-1. [DOI] [PubMed] [Google Scholar]
- Yamada H., Moriyama Y., Maeda M., Futai M. Transmembrane topology of Escherichia coli H(+)-ATPase (ATP synthase) subunit a. FEBS Lett. 1996 Jul 15;390(1):34–38. doi: 10.1016/0014-5793(96)00621-7. [DOI] [PubMed] [Google Scholar]