Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Oct 15;17(20):6086–6095. doi: 10.1093/emboj/17.20.6086

Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells.

S Salomon 1, H Puchta 1
PMCID: PMC1170935  PMID: 9774352

Abstract

To analyze genomic changes resulting from double-strand break (DSB) repair, transgenic tobacco plants were obtained that carried in their genome a restriction site of the rare cutting endonuclease I-SceI within a negative selectable marker gene. After induction of DSB repair via Agrobacterium-mediated transient expression of I-SceI, plant cells were selected that carried a loss-of-function phenotype of the marker. Surprisingly, in addition to deletions, in a number of cases repair was associated with the insertion of unique and repetitive genomic sequences into the break. Thus, DSB repair offers a mechanism for spreading different kinds of sequences into new chromosomal positions. This may have evolutionary consequences particularly for plants, as genomic alterations occurring in meristem cells can be transferred to the next generation. Moreover, transfer DNA (T-DNA), carrying the open reading frame of I-SceI, was found in several cases to be integrated into the transgenic I-SceI site. This indicates that DSB repair also represents a pathway for the integration of T-DNA into the plant genome.

Full Text

The Full Text of this article is available as a PDF (446.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert H., Dale E. C., Lee E., Ow D. W. Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J. 1995 Apr;7(4):649–659. doi: 10.1046/j.1365-313x.1995.7040649.x. [DOI] [PubMed] [Google Scholar]
  2. Bakkeren G., Koukolíková-Nicola Z., Grimsley N., Hohn B. Recovery of Agrobacterium tumefaciens T-DNA molecules from whole plants early after transfer. Cell. 1989 Jun 2;57(5):847–857. doi: 10.1016/0092-8674(89)90799-x. [DOI] [PubMed] [Google Scholar]
  3. Bennetzen J. L., Kellogg E. A. Do Plants Have a One-Way Ticket to Genomic Obesity? Plant Cell. 1997 Sep;9(9):1509–1514. doi: 10.1105/tpc.9.9.1509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 1984 Nov 26;12(22):8711–8721. doi: 10.1093/nar/12.22.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chiurazzi M., Ray A., Viret J. F., Perera R., Wang X. H., Lloyd A. M., Signer E. R. Enhancement of somatic intrachromosomal homologous recombination in Arabidopsis by the HO endonuclease. Plant Cell. 1996 Nov;8(11):2057–2066. doi: 10.1105/tpc.8.11.2057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Neve M., De Buck S., Jacobs A., Van Montagu M., Depicker A. T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J. 1997 Jan;11(1):15–29. doi: 10.1046/j.1365-313x.1997.11010015.x. [DOI] [PubMed] [Google Scholar]
  7. Gheysen G., Villarroel R., Van Montagu M. Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev. 1991 Feb;5(2):287–297. doi: 10.1101/gad.5.2.287. [DOI] [PubMed] [Google Scholar]
  8. Gorbunova V., Levy A. A. Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res. 1997 Nov 15;25(22):4650–4657. doi: 10.1093/nar/25.22.4650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grandbastien M. A., Spielmann A., Caboche M. Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature. 1989 Jan 26;337(6205):376–380. doi: 10.1038/337376a0. [DOI] [PubMed] [Google Scholar]
  10. Haber J. E. In vivo biochemistry: physical monitoring of recombination induced by site-specific endonucleases. Bioessays. 1995 Jul;17(7):609–620. doi: 10.1002/bies.950170707. [DOI] [PubMed] [Google Scholar]
  11. Hiei Y., Ohta S., Komari T., Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 1994 Aug;6(2):271–282. doi: 10.1046/j.1365-313x.1994.6020271.x. [DOI] [PubMed] [Google Scholar]
  12. Huang L. C., Clarkin K. C., Wahl G. M. Sensitivity and selectivity of the DNA damage sensor responsible for activating p53-dependent G1 arrest. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4827–4832. doi: 10.1073/pnas.93.10.4827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Iglesias V. A., Moscone E. A., Papp I., Neuhuber F., Michalowski S., Phelan T., Spiker S., Matzke M., Matzke A. J. Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco. Plant Cell. 1997 Aug;9(8):1251–1264. doi: 10.1105/tpc.9.8.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jasin M. Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet. 1996 Jun;12(6):224–228. doi: 10.1016/0168-9525(96)10019-6. [DOI] [PubMed] [Google Scholar]
  15. Lehman C. W., Trautman J. K., Carroll D. Illegitimate recombination in Xenopus: characterization of end-joined junctions. Nucleic Acids Res. 1994 Feb 11;22(3):434–442. doi: 10.1093/nar/22.3.434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lieber M. R., Grawunder U., Wu X., Yaneva M. Tying loose ends: roles of Ku and DNA-dependent protein kinase in the repair of double-strand breaks. Curr Opin Genet Dev. 1997 Feb;7(1):99–104. doi: 10.1016/s0959-437x(97)80116-5. [DOI] [PubMed] [Google Scholar]
  17. Mason R. M., Thacker J., Fairman M. P. The joining of non-complementary DNA double-strand breaks by mammalian extracts. Nucleic Acids Res. 1996 Dec 15;24(24):4946–4953. doi: 10.1093/nar/24.24.4946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Matsumoto S., Ito Y., Hosoi T., Takahashi Y., Machida Y. Integration of Agrobacterium T-DNA into a tobacco chromosome: possible involvement of DNA homology between T-DNA and plant DNA. Mol Gen Genet. 1990 Dec;224(3):309–316. doi: 10.1007/BF00262423. [DOI] [PubMed] [Google Scholar]
  19. Mezard C., Nicolas A. Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae. Mol Cell Biol. 1994 Feb;14(2):1278–1292. doi: 10.1128/mcb.14.2.1278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Moore J. K., Haber J. E. Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks. Nature. 1996 Oct 17;383(6601):644–646. doi: 10.1038/383644a0. [DOI] [PubMed] [Google Scholar]
  21. Nassif N., Penney J., Pal S., Engels W. R., Gloor G. B. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol Cell Biol. 1994 Mar;14(3):1613–1625. doi: 10.1128/mcb.14.3.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nicolás A. L., Munz P. L., Young C. S. A modified single-strand annealing model best explains the joining of DNA double-strand breaks mammalian cells and cell extracts. Nucleic Acids Res. 1995 Mar 25;23(6):1036–1043. doi: 10.1093/nar/23.6.1036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ohba T., Yoshioka Y., Machida C., Machida Y. DNA rearrangement associated with the integration of T-DNA in tobacco: an example for multiple duplications of DNA around the integration target. Plant J. 1995 Jan;7(1):157–164. doi: 10.1046/j.1365-313x.1995.07010157.x. [DOI] [PubMed] [Google Scholar]
  24. Papp I., Iglesias V. A., Moscone E. A., Michalowski S., Spiker S., Park Y. D., Matzke M. A., Matzke A. J. Structural instability of a transgene locus in tobacco is associated with aneuploidy. Plant J. 1996 Sep;10(3):469–478. doi: 10.1046/j.1365-313x.1996.10030469.x. [DOI] [PubMed] [Google Scholar]
  25. Petrov D. Slow but Steady: Reduction of Genome Size through Biased Mutation. Plant Cell. 1997 Nov;9(11):1900–1901. doi: 10.1105/tpc.9.11.1900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pfeiffer P., Thode S., Hancke J., Vielmetter W. Mechanisms of overlap formation in nonhomologous DNA end joining. Mol Cell Biol. 1994 Feb;14(2):888–895. doi: 10.1128/mcb.14.2.888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pipiras E., Coquelle A., Bieth A., Debatisse M. Interstitial deletions and intrachromosomal amplification initiated from a double-strand break targeted to a mammalian chromosome. EMBO J. 1998 Jan 2;17(1):325–333. doi: 10.1093/emboj/17.1.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Puchta H., Dujon B., Hohn B. Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res. 1993 Nov 11;21(22):5034–5040. doi: 10.1093/nar/21.22.5034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Puchta H., Dujon B., Hohn B. Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci U S A. 1996 May 14;93(10):5055–5060. doi: 10.1073/pnas.93.10.5055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Risseeuw E., Franke-van Dijk M. E., Hooykaas P. J. Gene targeting and instability of Agrobacterium T-DNA loci in the plant genome. Plant J. 1997 Apr;11(4):717–728. doi: 10.1046/j.1365-313x.1997.11040717.x. [DOI] [PubMed] [Google Scholar]
  31. Roth D. B., Proctor G. N., Stewart L. K., Wilson J. H. Oligonucleotide capture during end joining in mammalian cells. Nucleic Acids Res. 1991 Dec;19(25):7201–7205. doi: 10.1093/nar/19.25.7201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rothstein S. J., Lahners K. N., Lotstein R. J., Carozzi N. B., Jayne S. M., Rice D. A. Promoter cassettes, antibiotic-resistance genes, and vectors for plant transformation. Gene. 1987;53(2-3):153–161. doi: 10.1016/0378-1119(87)90003-5. [DOI] [PubMed] [Google Scholar]
  33. Rubin E., Levy A. A. Abortive gap repair: underlying mechanism for Ds element formation. Mol Cell Biol. 1997 Nov;17(11):6294–6302. doi: 10.1128/mcb.17.11.6294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. SanMiguel P., Tikhonov A., Jin Y. K., Motchoulskaia N., Zakharov D., Melake-Berhan A., Springer P. S., Edwards K. J., Lee M., Avramova Z. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996 Nov 1;274(5288):765–768. doi: 10.1126/science.274.5288.765. [DOI] [PubMed] [Google Scholar]
  35. Sargent R. G., Brenneman M. A., Wilson J. H. Repair of site-specific double-strand breaks in a mammalian chromosome by homologous and illegitimate recombination. Mol Cell Biol. 1997 Jan;17(1):267–277. doi: 10.1128/mcb.17.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shirley B. W., Hanley S., Goodman H. M. Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. Plant Cell. 1992 Mar;4(3):333–347. doi: 10.1105/tpc.4.3.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Suzuki K., Yamagiwa Y., Matsui T., Yoshida K. Restriction enzyme-resistant high molecular weight telomeric DNA fragments in tobacco. DNA Res. 1994;1(3):129–138. doi: 10.1093/dnares/1.3.129. [DOI] [PubMed] [Google Scholar]
  38. Swoboda P., Gal S., Hohn B., Puchta H. Intrachromosomal homologous recombination in whole plants. EMBO J. 1994 Jan 15;13(2):484–489. doi: 10.1002/j.1460-2075.1994.tb06283.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Takano M., Egawa H., Ikeda J. E., Wakasa K. The structures of integration sites in transgenic rice. Plant J. 1997 Mar;11(3):353–361. doi: 10.1046/j.1365-313x.1997.11030353.x. [DOI] [PubMed] [Google Scholar]
  40. Tebbutt S. J., Rogers H. J., Lonsdale D. M. Characterization of a tobacco gene encoding a pollen-specific polygalacturonase. Plant Mol Biol. 1994 May;25(2):283–297. doi: 10.1007/BF00023244. [DOI] [PubMed] [Google Scholar]
  41. Teng S. C., Kim B., Gabriel A. Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. Nature. 1996 Oct 17;383(6601):641–644. doi: 10.1038/383641a0. [DOI] [PubMed] [Google Scholar]
  42. Tinland B., Hohn B., Puchta H. Agrobacterium tumefaciens transfers single-stranded transferred DNA (T-DNA) into the plant cell nucleus. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8000–8004. doi: 10.1073/pnas.91.17.8000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Vergunst A. C., Hooykaas P. J. Cre/lox-mediated site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana by transient expression of cre. Plant Mol Biol. 1998 Oct;38(3):393–406. doi: 10.1023/a:1006024500008. [DOI] [PubMed] [Google Scholar]
  44. Vergunst A. C., Jansen L. E., Hooykaas P. J. Site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana mediated by Cre recombinase. Nucleic Acids Res. 1998 Jun 1;26(11):2729–2734. doi: 10.1093/nar/26.11.2729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wessler S., Tarpley A., Purugganan M., Spell M., Okagaki R. Filler DNA is associated with spontaneous deletions in maize. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8731–8735. doi: 10.1073/pnas.87.22.8731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. de Groot M. J., Offringa R., Groet J., Does M. P., Hooykaas P. J., van den Elzen P. J. Non-recombinant background in gene targeting: illegitimate recombination between a hpt gene and a defective 5' deleted nptII gene can restore a Kmr phenotype in tobacco. Plant Mol Biol. 1994 Jul;25(4):721–733. doi: 10.1007/BF00029609. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES