Abstract
Protein p1 (85 amino acids) of the Bacillus subtilis phage phi29 is a membrane-associated protein required for in vivo viral DNA replication. In the present study, we have constructed two fusion proteins, maltose-binding protein (MalE)-p1 and MalE-p1DeltaN33. By using both sedimentation assays and negative-stain electron microscopy analysis, we demonstrated that MalE-p1 molecules self-associated into long filamentous structures, which did not assemble further into larger arrays. These structures were constituted by a core of protein p1 surrounded by MalE subunits. After removal of the MalE component by cleavage with protease factor Xa, the resulting protein p1 filaments tended to associate, forming bundles. The MalE-p1DeltaN33 fusion protein, however, did not self-interact in solution. Nevertheless, after being separated from the MalE domain by factor Xa digestion, protein p1DeltaN33 assembled into long protofilaments that associated in a highly ordered, parallel array forming large two-dimensional sheets. These structures resemble eukaryotic tubulin and bacterial FtsZ polymers. In addition, we show that protein p1 influences the rate of in vivo phi29 DNA synthesis in a temperature-dependent manner. We propose that protein p1 is a component of a viral-encoded structure that associates with the bacterial membrane. This structure would provide an anchoring site for the viral DNA replication machinery.
Full Text
The Full Text of this article is available as a PDF (755.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abril A. M., Salas M., Andreu J. M., Hermoso J. M., Rivas G. Phage phi29 protein p6 is in a monomer-dimer equilibrium that shifts to higher association states at the millimolar concentrations found in vivo. Biochemistry. 1997 Sep 30;36(39):11901–11908. doi: 10.1021/bi970994e. [DOI] [PubMed] [Google Scholar]
- Bravo A., Alonso J. C., Trautner T. A. Functional analysis of the Bacillus subtilis bacteriophage SPP1 pac site. Nucleic Acids Res. 1990 May 25;18(10):2881–2886. doi: 10.1093/nar/18.10.2881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bravo A., Hermoso J. M., Salas M. A genetic approach to the identification of functional amino acids in protein p6 of Bacillus subtilis phage phi 29. Mol Gen Genet. 1994 Dec 1;245(5):529–536. doi: 10.1007/BF00282215. [DOI] [PubMed] [Google Scholar]
- Bravo A., Salas M. Initiation of bacteriophage phi29 DNA replication in vivo: assembly of a membrane-associated multiprotein complex. J Mol Biol. 1997 May 30;269(1):102–112. doi: 10.1006/jmbi.1997.1032. [DOI] [PubMed] [Google Scholar]
- Erickson H. P. FtsZ, a prokaryotic homolog of tubulin? Cell. 1995 Feb 10;80(3):367–370. doi: 10.1016/0092-8674(95)90486-7. [DOI] [PubMed] [Google Scholar]
- Erickson H. P. FtsZ, a tubulin homologue in prokaryote cell division. Trends Cell Biol. 1997 Sep;7(9):362–367. doi: 10.1016/S0962-8924(97)01108-2. [DOI] [PubMed] [Google Scholar]
- Erickson H. P. Microtubule surface lattice and subunit structure and observations on reassembly. J Cell Biol. 1974 Jan;60(1):153–167. doi: 10.1083/jcb.60.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erickson H. P., Stoffler D. Protofilaments and rings, two conformations of the tubulin family conserved from bacterial FtsZ to alpha/beta and gamma tubulin. J Cell Biol. 1996 Oct;135(1):5–8. doi: 10.1083/jcb.135.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erickson H. P., Taylor D. W., Taylor K. A., Bramhill D. Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):519–523. doi: 10.1073/pnas.93.1.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaskin F., Kress Y. Zinc ion-induced assembly of tubulin. J Biol Chem. 1977 Oct 10;252(19):6918–6924. [PubMed] [Google Scholar]
- Herrmann H., Aebi U. Intermediate filament assembly: fibrillogenesis is driven by decisive dimer-dimer interactions. Curr Opin Struct Biol. 1998 Apr;8(2):177–185. doi: 10.1016/s0959-440x(98)80035-3. [DOI] [PubMed] [Google Scholar]
- Ivarie R. D., Pène J. J. DNA replication in bacteriophage ø29: the requirement of a viral-specfic product for association of ø29 DNA with the cell membrane of Bacillus amyloliquefaciens. Virology. 1973 Apr;52(2):351–362. doi: 10.1016/0042-6822(73)90330-9. [DOI] [PubMed] [Google Scholar]
- Lupas A. Coiled coils: new structures and new functions. Trends Biochem Sci. 1996 Oct;21(10):375–382. [PubMed] [Google Scholar]
- Lupas A., Van Dyke M., Stock J. Predicting coiled coils from protein sequences. Science. 1991 May 24;252(5009):1162–1164. doi: 10.1126/science.252.5009.1162. [DOI] [PubMed] [Google Scholar]
- Mendez J., Blanco L., Salas M. Protein-primed DNA replication: a transition between two modes of priming by a unique DNA polymerase. EMBO J. 1997 May 1;16(9):2519–2527. doi: 10.1093/emboj/16.9.2519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moir R. D., Spann T. P., Goldman R. D. The dynamic properties and possible functions of nuclear lamins. Int Rev Cytol. 1995;162B:141–182. doi: 10.1016/s0074-7696(08)62616-9. [DOI] [PubMed] [Google Scholar]
- Moreno F. Suppressor-sensitive mutants and genetic map of Bacillus subtilis bacteriophage phi 29. Virology. 1974 Nov;62(1):1–16. doi: 10.1016/0042-6822(74)90298-0. [DOI] [PubMed] [Google Scholar]
- Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
- Mukherjee A., Lutkenhaus J. Dynamic assembly of FtsZ regulated by GTP hydrolysis. EMBO J. 1998 Jan 15;17(2):462–469. doi: 10.1093/emboj/17.2.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prieto I., Méndez E., Salas M. Characterization, overproduction and purification of the product of gene 1 of Bacillus subtilis phage phi 29. Gene. 1989 Apr 30;77(2):195–204. doi: 10.1016/0378-1119(89)90067-x. [DOI] [PubMed] [Google Scholar]
- Reilly B. E., Zeece V. M., Anderson D. L. Genetic study of suppressor-sensitive mutants of the Bacillus subtilis bacteriophage phi 29. J Virol. 1973 May;11(5):756–760. doi: 10.1128/jvi.11.5.756-760.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothfield L. I., Justice S. S. Bacterial cell division: the cycle of the ring. Cell. 1997 Mar 7;88(5):581–584. doi: 10.1016/s0092-8674(00)81899-1. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Simon J. R., Salmon E. D. The structure of microtubule ends during the elongation and shortening phases of dynamic instability examined by negative-stain electron microscopy. J Cell Sci. 1990 Aug;96(Pt 4):571–582. doi: 10.1242/jcs.96.4.571. [DOI] [PubMed] [Google Scholar]
- Talavera A., Jimenez F., Salas M., Viñuela E. Temperature-sensitive mutants of bacteriophage phi-29. Virology. 1971 Dec;46(3):586–595. doi: 10.1016/0042-6822(71)90062-6. [DOI] [PubMed] [Google Scholar]
- Voter W. A., Erickson H. P. The kinetics of microtubule assembly. Evidence for a two-stage nucleation mechanism. J Biol Chem. 1984 Aug 25;259(16):10430–10438. [PubMed] [Google Scholar]
- Yoshikawa H., Ito J. Nucleotide sequence of the major early region of bacteriophage phi 29. Gene. 1982 Mar;17(3):323–335. doi: 10.1016/0378-1119(82)90149-4. [DOI] [PubMed] [Google Scholar]
- Yu X. C., Margolin W. Ca2+-mediated GTP-dependent dynamic assembly of bacterial cell division protein FtsZ into asters and polymer networks in vitro. EMBO J. 1997 Sep 1;16(17):5455–5463. doi: 10.1093/emboj/16.17.5455. [DOI] [PMC free article] [PubMed] [Google Scholar]