Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Nov 2;17(21):6178–6187. doi: 10.1093/emboj/17.21.6178

A four-to-one association between peptide motifs: four C-terminal domains from cholinesterase assemble with one proline-rich attachment domain (PRAD) in the secretory pathway.

S Simon 1, E Krejci 1, J Massoulié 1
PMCID: PMC1170944  PMID: 9799227

Abstract

The major type of acetylcholinesterase in vertebrates (AChET) is characterized by the presence of a short C-terminal domain of 40 residues, the 'tryptophan amphiphilic tetramerization' (WAT) domain. The presence of this domain is not necessary for catalytic activity but is responsible for hydrophobic interactions and for the capacity of AChET subunits to form quaternary associations with anchoring proteins, thereby conditioning their functional localization. In the collagen tail of asymmetric forms, we characterized a small conserved region that is sufficient for binding an AChET tetramer, the proline-rich attachment domain (PRAD). We show that the WAT domain alone is sufficient for association with the PRAD, and that it can attach foreign proteins (alkaline phosphatase, GFP) to a PRAD-containing construct with a glycophosphatidylinositol anchor (GPI), and thus anchor them to the cell surface. Furthermore, we show that isolated WAT domains, or proteins containing a WAT domain, can replace individual AChET subunits in PRAD-linked tetramers. This suggests that the four WAT domains interact with the PRAD in a similar manner. These quaternary interactions can form without intercatenary disulfide bonds. The common catalytic domains of AChE are not necessary for tetrameric assembly, although they may contribute to the stability of the tetramer.

Full Text

The Full Text of this article is available as a PDF (657.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anglister L., Silman I. Molecular structure of elongated forms of electric eel acetylcholinesterase. J Mol Biol. 1978 Nov 5;125(3):293–311. doi: 10.1016/0022-2836(78)90404-7. [DOI] [PubMed] [Google Scholar]
  2. Beeri R., Andres C., Lev-Lehman E., Timberg R., Huberman T., Shani M., Soreq H. Transgenic expression of human acetylcholinesterase induces progressive cognitive deterioration in mice. Curr Biol. 1995 Sep 1;5(9):1063–1071. doi: 10.1016/s0960-9822(95)00211-9. [DOI] [PubMed] [Google Scholar]
  3. Bon S., Coussen F., Massoulié J. Quaternary associations of acetylcholinesterase. II. The polyproline attachment domain of the collagen tail. J Biol Chem. 1997 Jan 31;272(5):3016–3021. doi: 10.1074/jbc.272.5.3016. [DOI] [PubMed] [Google Scholar]
  4. Bon S., Massoulié J. Quaternary associations of acetylcholinesterase. I. Oligomeric associations of T subunits with and without the amino-terminal domain of the collagen tail. J Biol Chem. 1997 Jan 31;272(5):3007–3015. doi: 10.1074/jbc.272.5.3007. [DOI] [PubMed] [Google Scholar]
  5. Boschetti N., Brodbeck U. The membrane anchor of mammalian brain acetylcholinesterase consists of a single glycosylated protein of 22 kDa. FEBS Lett. 1996 Feb 12;380(1-2):133–136. doi: 10.1016/0014-5793(96)00041-5. [DOI] [PubMed] [Google Scholar]
  6. Boschetti N., Liao J., Brodbeck U. The membrane form of acetylcholinesterase from rat brain contains a 20 kDa hydrophobic anchor. Neurochem Res. 1994 Mar;19(3):359–365. doi: 10.1007/BF00971586. [DOI] [PubMed] [Google Scholar]
  7. Chan D. C., Bedford M. T., Leder P. Formin binding proteins bear WWP/WW domains that bind proline-rich peptides and functionally resemble SH3 domains. EMBO J. 1996 Mar 1;15(5):1045–1054. [PMC free article] [PubMed] [Google Scholar]
  8. Cousin X., Hotelier T., Giles K., Toutant J. P., Chatonnet A. aCHEdb: the database system for ESTHER, the alpha/beta fold family of proteins and the Cholinesterase gene server. Nucleic Acids Res. 1998 Jan 1;26(1):226–228. doi: 10.1093/nar/26.1.226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cousin X., Hotelier T., Liévin P., Toutant J. P., Chatonnet A. A cholinesterase genes server (ESTHER): a database of cholinesterase-related sequences for multiple alignments, phylogenetic relationships, mutations and structural data retrieval. Nucleic Acids Res. 1996 Jan 1;24(1):132–136. doi: 10.1093/nar/24.1.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Coussen F., Bonnerot C., Massoulié J. Stable expression of acetylcholinesterase and associated collagenic subunits in transfected RBL cell lines: production of GPI-anchored dimers and collagen-tailed forms. Eur J Cell Biol. 1995 Jul;67(3):254–260. [PubMed] [Google Scholar]
  11. Duval N., Krejci E., Grassi J., Coussen F., Massoulié J., Bon S. Molecular architecture of acetylcholinesterase collagen-tailed forms; construction of a glycolipid-tailed tetramer. EMBO J. 1992 Sep;11(9):3255–3261. doi: 10.1002/j.1460-2075.1992.tb05403.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Duval N., Massoulié J., Bon S. H and T subunits of acetylcholinesterase from Torpedo, expressed in COS cells, generate all types of globular forms. J Cell Biol. 1992 Aug;118(3):641–653. doi: 10.1083/jcb.118.3.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  14. Gennari K., Brunner J., Brodbeck U. Tetrameric detergent-soluble acetylcholinesterase from human caudate nucleus: subunit composition and number of active sites. J Neurochem. 1987 Jul;49(1):12–18. doi: 10.1111/j.1471-4159.1987.tb03386.x. [DOI] [PubMed] [Google Scholar]
  15. Gough N. R., Randall W. R. Oligomerization of chicken acetylcholinesterase does not require intersubunit disulfide bonds. J Neurochem. 1995 Dec;65(6):2734–2741. doi: 10.1046/j.1471-4159.1995.65062734.x. [DOI] [PubMed] [Google Scholar]
  16. Hawrylak K., Stinson R. A. The solubilization of tetrameric alkaline phosphatase from human liver and its conversion into various forms by phosphatidylinositol phospholipase C or proteolysis. J Biol Chem. 1988 Oct 5;263(28):14368–14373. [PubMed] [Google Scholar]
  17. Inestrosa N. C., Roberts W. L., Marshall T. L., Rosenberry T. L. Acetylcholinesterase from bovine caudate nucleus is attached to membranes by a novel subunit distinct from those of acetylcholinesterases in other tissues. J Biol Chem. 1987 Apr 5;262(10):4441–4444. [PubMed] [Google Scholar]
  18. Karpel R., Sternfeld M., Ginzberg D., Guhl E., Graessmann A., Soreq H. Overexpression of alternative human acetylcholinesterase forms modulates process extensions in cultured glioma cells. J Neurochem. 1996 Jan;66(1):114–123. doi: 10.1046/j.1471-4159.1996.66010114.x. [DOI] [PubMed] [Google Scholar]
  19. Knappik A., Plückthun A. An improved affinity tag based on the FLAG peptide for the detection and purification of recombinant antibody fragments. Biotechniques. 1994 Oct;17(4):754–761. [PubMed] [Google Scholar]
  20. Krejci E., Coussen F., Duval N., Chatel J. M., Legay C., Puype M., Vandekerckhove J., Cartaud J., Bon S., Massoulié J. Primary structure of a collagenic tail peptide of Torpedo acetylcholinesterase: co-expression with catalytic subunit induces the production of collagen-tailed forms in transfected cells. EMBO J. 1991 May;10(5):1285–1293. doi: 10.1002/j.1460-2075.1991.tb08070.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Krejci E., Thomine S., Boschetti N., Legay C., Sketelj J., Massoulié J. The mammalian gene of acetylcholinesterase-associated collagen. J Biol Chem. 1997 Sep 5;272(36):22840–22847. doi: 10.1074/jbc.272.36.22840. [DOI] [PubMed] [Google Scholar]
  22. Krieg P. A., Melton D. A. An enhancer responsible for activating transcription at the midblastula transition in Xenopus development. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2331–2335. doi: 10.1073/pnas.84.8.2331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  24. Lee S. L., Heinemann S., Taylor P. Structural characterization of the asymmetric (17 + 13) S forms of acetylcholinesterase from Torpedo. I. Analysis of subunit composition. J Biol Chem. 1982 Oct 25;257(20):12282–12291. [PubMed] [Google Scholar]
  25. Lee S. L., Taylor P. Structural characterization of the asymmetric (17 + 13) S species of acetylcholinesterase from Torpedo. II. Component peptides obtained by selective proteolysis and disulfide bond reduction. J Biol Chem. 1982 Oct 25;257(20):12292–12301. [PubMed] [Google Scholar]
  26. Legay C., Bon S., Vernier P., Coussen F., Massoulié J. Cloning and expression of a rat acetylcholinesterase subunit: generation of multiple molecular forms and complementarity with a Torpedo collagenic subunit. J Neurochem. 1993 Jan;60(1):337–346. doi: 10.1111/j.1471-4159.1993.tb05856.x. [DOI] [PubMed] [Google Scholar]
  27. Lim W. A., Richards F. M., Fox R. O. Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains. Nature. 1994 Nov 24;372(6504):375–379. doi: 10.1038/372375a0. [DOI] [PubMed] [Google Scholar]
  28. Lockridge O., Adkins S., La Du B. N. Location of disulfide bonds within the sequence of human serum cholinesterase. J Biol Chem. 1987 Sep 25;262(27):12945–12952. [PubMed] [Google Scholar]
  29. Massoulié J., Pezzementi L., Bon S., Krejci E., Vallette F. M. Molecular and cellular biology of cholinesterases. Prog Neurobiol. 1993 Jul;41(1):31–91. doi: 10.1016/0301-0082(93)90040-y. [DOI] [PubMed] [Google Scholar]
  30. McTiernan C., Adkins S., Chatonnet A., Vaughan T. A., Bartels C. F., Kott M., Rosenberry T. L., La Du B. N., Lockridge O. Brain cDNA clone for human cholinesterase. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6682–6686. doi: 10.1073/pnas.84.19.6682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Morel N., Massoulié J. Expression and processing of vertebrate acetylcholinesterase in the yeast Pichia pastoris. Biochem J. 1997 Nov 15;328(Pt 1):121–129. doi: 10.1042/bj3280121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rakonczay Z., Brimijoin S. Monoclonal antibodies to rat brain acetylcholinesterase: comparative affinity for soluble and membrane-associated enzyme and for enzyme from different vertebrate species. J Neurochem. 1986 Jan;46(1):280–287. doi: 10.1111/j.1471-4159.1986.tb12959.x. [DOI] [PubMed] [Google Scholar]
  33. Roberts W. L., Doctor B. P., Foster J. D., Rosenberry T. L. Bovine brain acetylcholinesterase primary sequence involved in intersubunit disulfide linkages. J Biol Chem. 1991 Apr 25;266(12):7481–7487. [PubMed] [Google Scholar]
  34. Rotundo R. L. Asymmetric acetylcholinesterase is assembled in the Golgi apparatus. Proc Natl Acad Sci U S A. 1984 Jan;81(2):479–483. doi: 10.1073/pnas.81.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Shapira M., Seidman S., Sternfeld M., Timberg R., Kaufer D., Patrick J., Soreq H. Transgenic engineering of neuromuscular junctions in Xenopus laevis embryos transiently overexpressing key cholinergic proteins. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9072–9076. doi: 10.1073/pnas.91.19.9072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tsim K. W., Randall W. R., Barnard E. A. Synaptic acetylcholinesterase of chicken muscle changes during development from a hybrid to a homogeneous enzyme. EMBO J. 1988 Aug;7(8):2451–2456. doi: 10.1002/j.1460-2075.1988.tb03091.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Velan B., Grosfeld H., Kronman C., Leitner M., Gozes Y., Lazar A., Flashner Y., Marcus D., Cohen S., Shafferman A. The effect of elimination of intersubunit disulfide bonds on the activity, assembly, and secretion of recombinant human acetylcholinesterase. Expression of acetylcholinesterase Cys-580----Ala mutant. J Biol Chem. 1991 Dec 15;266(35):23977–23984. [PubMed] [Google Scholar]
  38. Velan B., Kronman C., Flashner Y., Shafferman A. Reversal of signal-mediated cellular retention by subunit assembly of human acetylcholinesterase. J Biol Chem. 1994 Sep 9;269(36):22719–22725. [PubMed] [Google Scholar]
  39. Yu H., Chen J. K., Feng S., Dalgarno D. C., Brauer A. W., Schreiber S. L. Structural basis for the binding of proline-rich peptides to SH3 domains. Cell. 1994 Mar 11;76(5):933–945. doi: 10.1016/0092-8674(94)90367-0. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES