Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Nov 2;17(21):6188–6199. doi: 10.1093/emboj/17.21.6188

alpha-latrotoxin action probed with recombinant toxin: receptors recruit alpha-latrotoxin but do not transduce an exocytotic signal.

K Ichtchenko 1, M Khvotchev 1, N Kiyatkin 1, L Simpson 1, S Sugita 1, T C Südhof 1
PMCID: PMC1170945  PMID: 9799228

Abstract

alpha-Latrotoxin stimulates neurotransmitter release probably by binding to two receptors, CIRL/latrophilin 1 (CL1) and neurexin Ialpha. We have now produced recombinant alpha-latrotoxin (LtxWT) that is as active as native alpha-latrotoxin in triggering synaptic release of glutamate, GABA and norepinephrine. We have also generated three alpha-latrotoxin mutants with substitutions in conserved cysteine residues, and a fourth mutant with a four-residue insertion. All four alpha-latrotoxin mutants were found to be unable to trigger release. Interestingly, the insertion mutant LtxN4C exhibited receptor-binding affinities identical to wild-type LtxWT, bound to CL1 and neurexin Ialpha as well as LtxWT, and similarly stimulated synaptic hydrolysis of phosphatidylinositolphosphates. Therefore, receptor binding by alpha-latrotoxin and stimulation of phospholipase C are insufficient to trigger exocytosis. This conclusion was confirmed in experiments with La3+ and Cd2+. La3+ blocked release triggered by LtxWT, whereas Cd2+ enhanced it. Both cations, however, had no effect on the stimulation by LtxWT of phosphatidylinositolphosphate hydrolysis. Our data show that receptor binding by alpha-latrotoxin and activation of phospholipase C do not by themselves trigger exocytosis. Thus receptors recruit alpha-latrotoxin to its point of action without activating exocytosis. Exocytosis probably requires an additional receptor-independent activity of alpha-latrotoxin that is selectively inhibited by the LtxN4C mutation and by La3+.

Full Text

The Full Text of this article is available as a PDF (783.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ceccarelli B., Hurlbut W. P. Ca2+-dependent recycling of synaptic vesicles at the frog neuromuscular junction. J Cell Biol. 1980 Oct;87(1):297–303. doi: 10.1083/jcb.87.1.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Davletov B. A., Krasnoperov V., Hata Y., Petrenko A. G., Südhof T. C. High affinity binding of alpha-latrotoxin to recombinant neurexin I alpha. J Biol Chem. 1995 Oct 13;270(41):23903–23905. doi: 10.1074/jbc.270.41.23903. [DOI] [PubMed] [Google Scholar]
  3. Davletov B. A., Meunier F. A., Ashton A. C., Matsushita H., Hirst W. D., Lelianova V. G., Wilkin G. P., Dolly J. O., Ushkaryov Y. A. Vesicle exocytosis stimulated by alpha-latrotoxin is mediated by latrophilin and requires both external and stored Ca2+. EMBO J. 1998 Jul 15;17(14):3909–3920. doi: 10.1093/emboj/17.14.3909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davletov B. A., Shamotienko O. G., Lelianova V. G., Grishin E. V., Ushkaryov Y. A. Isolation and biochemical characterization of a Ca2+-independent alpha-latrotoxin-binding protein. J Biol Chem. 1996 Sep 20;271(38):23239–23245. doi: 10.1074/jbc.271.38.23239. [DOI] [PubMed] [Google Scholar]
  5. De Camilli P., Emr S. D., McPherson P. S., Novick P. Phosphoinositides as regulators in membrane traffic. Science. 1996 Mar 15;271(5255):1533–1539. doi: 10.1126/science.271.5255.1533. [DOI] [PubMed] [Google Scholar]
  6. Dulubova I. E., Krasnoperov V. G., Khvotchev M. V., Pluzhnikov K. A., Volkova T. M., Grishin E. V., Vais H., Bell D. R., Usherwood P. N. Cloning and structure of delta-latroinsectotoxin, a novel insect-specific member of the latrotoxin family: functional expression requires C-terminal truncation. J Biol Chem. 1996 Mar 29;271(13):7535–7543. doi: 10.1074/jbc.271.13.7535. [DOI] [PubMed] [Google Scholar]
  7. FINKELSTEIN A., Rubin L. L., Tzeng M. C. Black widow spider venom: effect of purified toxin on lipid bilayer membranes. Science. 1976 Sep 10;193(4257):1009–1011. doi: 10.1126/science.948756. [DOI] [PubMed] [Google Scholar]
  8. FRONTALI N., GRASSO A. SEPARATION OF THREE TOXICOLOGICALLY DIFFERENT PROTEIN COMPONENTS FROM THE VENOM OF THE SPIDER LATRODECTUS TREDECIMGUTTATUS. Arch Biochem Biophys. 1964 Jul 20;106:213–218. doi: 10.1016/0003-9861(64)90178-x. [DOI] [PubMed] [Google Scholar]
  9. Frontali N., Ceccarelli B., Gorio A., Mauro A., Siekevitz P., Tzeng M. C., Hurlbut W. P. Purification from black widow spider venom of a protein factor causing the depletion of synaptic vesicles at neuromuscular junctions. J Cell Biol. 1976 Mar;68(3):462–479. doi: 10.1083/jcb.68.3.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Geppert M., Khvotchev M., Krasnoperov V., Goda Y., Missler M., Hammer R. E., Ichtchenko K., Petrenko A. G., Südhof T. C. Neurexin I alpha is a major alpha-latrotoxin receptor that cooperates in alpha-latrotoxin action. J Biol Chem. 1998 Jan 16;273(3):1705–1710. doi: 10.1074/jbc.273.3.1705. [DOI] [PubMed] [Google Scholar]
  11. Gorio A., Rubin L. L., Mauro A. Double mode of action of black widow spider venom on frog neuromuscular junction. J Neurocytol. 1978 Apr;7(2):193–202. doi: 10.1007/BF01217918. [DOI] [PubMed] [Google Scholar]
  12. Grishin E. V., Himmelreich N. H., Pluzhnikov K. A., Pozdnyakova N. G., Storchak L. G., Volkova T. M., Woll P. G. Modulation of functional activities of the neurotoxin from black widow spider venom. FEBS Lett. 1993 Dec 27;336(2):205–207. doi: 10.1016/0014-5793(93)80803-3. [DOI] [PubMed] [Google Scholar]
  13. Hata Y., Butz S., Südhof T. C. CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J Neurosci. 1996 Apr 15;16(8):2488–2494. doi: 10.1523/JNEUROSCI.16-08-02488.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hurlbut W. P., Chieregatti E., Valtorta F., Haimann C. Alpha-latrotoxin channels in neuroblastoma cells. J Membr Biol. 1994 Feb;138(1):91–102. doi: 10.1007/BF00211072. [DOI] [PubMed] [Google Scholar]
  15. Khvotchev M., Südhof T. C. Newly synthesized phosphatidylinositol phosphates are required for synaptic norepinephrine but not glutamate or gamma-aminobutyric acid (GABA) release. J Biol Chem. 1998 Aug 21;273(34):21451–21454. doi: 10.1074/jbc.273.34.21451. [DOI] [PubMed] [Google Scholar]
  16. Kiyatkin N. I., Dulubova I. E., Chekhovskaya I. A., Grishin E. V. Cloning and structure of cDNA encoding alpha-latrotoxin from black widow spider venom. FEBS Lett. 1990 Sep 17;270(1-2):127–131. doi: 10.1016/0014-5793(90)81250-r. [DOI] [PubMed] [Google Scholar]
  17. Kiyatkin N. I., Kulikovskaya I. M., Grishin E. V., Beadle D. J., King L. A. Functional characterization of black widow spider neurotoxins synthesised in insect cells. Eur J Biochem. 1995 Jun 15;230(3):854–859. doi: 10.1111/j.1432-1033.1995.tb20628.x. [DOI] [PubMed] [Google Scholar]
  18. Kiyatkin N., Dulubova I., Chekhovskaya I., Lipkin A., Grishin E. Structure of the low molecular weight protein copurified with alpha-latrotoxin. Toxicon. 1992 Jul;30(7):771–774. doi: 10.1016/0041-0101(92)90012-t. [DOI] [PubMed] [Google Scholar]
  19. Kiyatkin N., Dulubova I., Grishin E. Cloning and structural analysis of alpha-latroinsectotoxin cDNA. Abundance of ankyrin-like repeats. Eur J Biochem. 1993 Apr 1;213(1):121–127. doi: 10.1111/j.1432-1033.1993.tb17741.x. [DOI] [PubMed] [Google Scholar]
  20. Knipper M., Madeddu L., Breer H., Meldolesi J. Black widow spider venom-induced release of neurotransmitters: mammalian synaptosomes are stimulated by a unique venom component (alpha-latrotoxin), insect synaptosomes by multiple components. Neuroscience. 1986 Sep;19(1):55–62. doi: 10.1016/0306-4522(86)90005-9. [DOI] [PubMed] [Google Scholar]
  21. Krasnoperov V. G., Bittner M. A., Beavis R., Kuang Y., Salnikow K. V., Chepurny O. G., Little A. R., Plotnikov A. N., Wu D., Holz R. W. alpha-Latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. Neuron. 1997 Jun;18(6):925–937. doi: 10.1016/s0896-6273(00)80332-3. [DOI] [PubMed] [Google Scholar]
  22. Lelianova V. G., Davletov B. A., Sterling A., Rahman M. A., Grishin E. V., Totty N. F., Ushkaryov Y. A. Alpha-latrotoxin receptor, latrophilin, is a novel member of the secretin family of G protein-coupled receptors. J Biol Chem. 1997 Aug 22;272(34):21504–21508. doi: 10.1074/jbc.272.34.21504. [DOI] [PubMed] [Google Scholar]
  23. Magazanik L. G., Fedorova I. M., Kovalevskaya G. I., Pashkov V. N., Bulgakov O. V., Grishin E. V. Selective presynaptic insectotoxin (alpha-latroinsectotoxin) isolated from black widow spider venom. Neuroscience. 1992;46(1):181–188. doi: 10.1016/0306-4522(92)90017-v. [DOI] [PubMed] [Google Scholar]
  24. Massagué J. TGFbeta signaling: receptors, transducers, and Mad proteins. Cell. 1996 Jun 28;85(7):947–950. doi: 10.1016/s0092-8674(00)81296-9. [DOI] [PubMed] [Google Scholar]
  25. Missler M., Südhof T. C. Neurexins: three genes and 1001 products. Trends Genet. 1998 Jan;14(1):20–26. doi: 10.1016/S0168-9525(97)01324-3. [DOI] [PubMed] [Google Scholar]
  26. O'Connor V. M., Shamotienko O., Grishin E., Betz H. On the structure of the 'synaptosecretosome'. Evidence for a neurexin/synaptotagmin/syntaxin/Ca2+ channel complex. FEBS Lett. 1993 Jul 12;326(1-3):255–260. doi: 10.1016/0014-5793(93)81802-7. [DOI] [PubMed] [Google Scholar]
  27. Petrenko A. G., Perin M. S., Davletov B. A., Ushkaryov Y. A., Geppert M., Südhof T. C. Binding of synaptotagmin to the alpha-latrotoxin receptor implicates both in synaptic vesicle exocytosis. Nature. 1991 Sep 5;353(6339):65–68. doi: 10.1038/353065a0. [DOI] [PubMed] [Google Scholar]
  28. Rosahl T. W., Spillane D., Missler M., Herz J., Selig D. K., Wolff J. R., Hammer R. E., Malenka R. C., Südhof T. C. Essential functions of synapsins I and II in synaptic vesicle regulation. Nature. 1995 Jun 8;375(6531):488–493. doi: 10.1038/375488a0. [DOI] [PubMed] [Google Scholar]
  29. Rosenmund C., Stevens C. F. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron. 1996 Jun;16(6):1197–1207. doi: 10.1016/s0896-6273(00)80146-4. [DOI] [PubMed] [Google Scholar]
  30. Rosenthal L., Zacchetti D., Madeddu L., Meldolesi J. Mode of action of alpha-latrotoxin: role of divalent cations in Ca2(+)-dependent and Ca2(+)-independent effects mediated by the toxin. Mol Pharmacol. 1990 Dec;38(6):917–923. [PubMed] [Google Scholar]
  31. Tzeng M. C., Siekevitz P. The binding interaction between alpha-latrotoxin from black widow spider venom and a dog cerebral cortex synaptosomal membrane preparation. J Neurochem. 1979 Jul;33(1):263–274. doi: 10.1111/j.1471-4159.1979.tb11728.x. [DOI] [PubMed] [Google Scholar]
  32. Ushkaryov Y. A., Petrenko A. G., Geppert M., Südhof T. C. Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. Science. 1992 Jul 3;257(5066):50–56. doi: 10.1126/science.1621094. [DOI] [PubMed] [Google Scholar]
  33. Vicentini L. M., Meldolesi J. alpha Latrotoxin of black widow spider venom binds to a specific receptor coupled to phosphoinositide breakdown in PC12 cells. Biochem Biophys Res Commun. 1984 Jun 15;121(2):538–544. doi: 10.1016/0006-291x(84)90215-8. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES