Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Nov 2;17(21):6210–6218. doi: 10.1093/emboj/17.21.6210

Regulation of exocytosis from rat peritoneal mast cells by G protein beta gamma-subunits.

J A Pinxteren 1, A J O'Sullivan 1, P E Tatham 1, B D Gomperts 1
PMCID: PMC1170947  PMID: 9799230

Abstract

We applied G protein-derived beta gamma-subunits to permeabilized mast cells to test their ability to regulate exocytotic secretion. Mast cells permeabilized with streptolysin-O leak soluble (cytosol) proteins over a period of 5 min and become refractory to stimulation by Ca2+ and GTPgammaS over approximately 20-30 min. beta gamma-Subunits applied to the permeabilized cells retard this loss of sensitivity to stimulation (run-down) and it can be inferred that they interact with the regulatory mechanism for secretion. While alpha-subunits are without effect, beta gamma-subunits at concentrations >10(-8 )M enhance the secretion due to Ca2+ and GTPgammaS. Unlike the small GTPases Rac and Cdc42, beta gamma-subunits cannot induce secretion in the absence of an activating guanine nucleotide, and thus further GTP-binding proteins (likely to be Rho-related GTPases) must be involved. The enhancement due to beta gamma-subunits is mediated largely through interaction with pleckstrin homology (PH) domains. It remains manifest in the face of maximum activation by PMA and inhibition of PKC with the pseudosubstrate inhibitory peptide. Soluble peptides mimicking PH domains inhibit the secretion due to GTPgammaS and block the enhancement due to beta gamma-subunits. Our data suggest that beta gamma-subunits are components of the pathway of activation of secretion due to receptor-mimetic ligands such as mastoparan and compound 48/80.

Full Text

The Full Text of this article is available as a PDF (333.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali S. M., Burgoyne R. D. The stimulatory effect of calpactin (annexin II) on calcium-dependent exocytosis in chromaffin cells: requirement for both the N-terminal and core domains of p36 and ATP. Cell Signal. 1990;2(3):265–276. doi: 10.1016/0898-6568(90)90054-e. [DOI] [PubMed] [Google Scholar]
  2. Aridor M., Rajmilevich G., Beaven M. A., Sagi-Eisenberg R. Activation of exocytosis by the heterotrimeric G protein Gi3. Science. 1993 Dec 3;262(5139):1569–1572. doi: 10.1126/science.7504324. [DOI] [PubMed] [Google Scholar]
  3. Aridor M., Sagi-Eisenberg R. Neomycin is a potent secretagogue of mast cells that directly activates a GTP-binding protein involved in exocytosis. J Cell Biol. 1990 Dec;111(6 Pt 2):2885–2891. doi: 10.1083/jcb.111.6.2885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aridor M., Traub L. M., Sagi-Eisenberg R. Exocytosis in mast cells by basic secretagogues: evidence for direct activation of GTP-binding proteins. J Cell Biol. 1990 Sep;111(3):909–917. doi: 10.1083/jcb.111.3.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bennett J. P., Cockcroft S., Gomperts B. D. Ionomycin stimulates mast cell histamine secretion by forming a lipid-soluble calcium complex. Nature. 1979 Dec 20;282(5741):851–853. doi: 10.1038/282851a0. [DOI] [PubMed] [Google Scholar]
  6. Brown A. M., O'Sullivan A. J., Gomperts B. D. Induction of exocytosis from permeabilized mast cells by the guanosine triphosphatases Rac and Cdc42. Mol Biol Cell. 1998 May;9(5):1053–1063. doi: 10.1091/mbc.9.5.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chernomordik L. V., Vogel S. S., Sokoloff A., Onaran H. O., Leikina E. A., Zimmerberg J. Lysolipids reversibly inhibit Ca(2+)-, GTP- and pH-dependent fusion of biological membranes. FEBS Lett. 1993 Feb 22;318(1):71–76. doi: 10.1016/0014-5793(93)81330-3. [DOI] [PubMed] [Google Scholar]
  8. Churcher Y., Kramer K. M., Gomperts B. D. Evidence for protein dephosphorylation as a permissive step in GTP-gamma-S-induced exocytosis from permeabilized mast cells. Cell Regul. 1990 Jun;1(7):523–530. doi: 10.1091/mbc.1.7.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clapham D. E., Neer E. J. New roles for G-protein beta gamma-dimers in transmembrane signalling. Nature. 1993 Sep 30;365(6445):403–406. doi: 10.1038/365403a0. [DOI] [PubMed] [Google Scholar]
  10. Coso O. A., Teramoto H., Simonds W. F., Gutkind J. S. Signaling from G protein-coupled receptors to c-Jun kinase involves beta gamma subunits of heterotrimeric G proteins acting on a Ras and Rac1-dependent pathway. J Biol Chem. 1996 Feb 23;271(8):3963–3966. doi: 10.1074/jbc.271.8.3963. [DOI] [PubMed] [Google Scholar]
  11. Eberhard D. A., Cooper C. L., Low M. G., Holz R. W. Evidence that the inositol phospholipids are necessary for exocytosis. Loss of inositol phospholipids and inhibition of secretion in permeabilized cells caused by a bacterial phospholipase C and removal of ATP. Biochem J. 1990 May 15;268(1):15–25. doi: 10.1042/bj2680015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fernandez J. M., Neher E., Gomperts B. D. Capacitance measurements reveal stepwise fusion events in degranulating mast cells. 1984 Nov 29-Dec 5Nature. 312(5993):453–455. doi: 10.1038/312453a0. [DOI] [PubMed] [Google Scholar]
  13. Foreman J. C., Mongar J. L., Gomperts B. D. Calcium ionophores and movement of calcium ions following the physiological stimulus to a secretory process. Nature. 1973 Oct 5;245(5423):249–251. doi: 10.1038/245249a0. [DOI] [PubMed] [Google Scholar]
  14. Gomperts B. D. GE: a GTP-binding protein mediating exocytosis. Annu Rev Physiol. 1990;52:591–606. doi: 10.1146/annurev.ph.52.030190.003111. [DOI] [PubMed] [Google Scholar]
  15. Gomperts B. D., Tatham P. E. Regulated exocytotic secretion from permeabilized cells. Methods Enzymol. 1992;219:178–189. doi: 10.1016/0076-6879(92)19020-7. [DOI] [PubMed] [Google Scholar]
  16. Graber S. G., Figler R. A., Garrison J. C. Expression and purification of functional G protein alpha subunits using a baculovirus expression system. J Biol Chem. 1992 Jan 15;267(2):1271–1278. [PubMed] [Google Scholar]
  17. Harlan J. E., Hajduk P. J., Yoon H. S., Fesik S. W. Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature. 1994 Sep 8;371(6493):168–170. doi: 10.1038/371168a0. [DOI] [PubMed] [Google Scholar]
  18. Hay J. C., Fisette P. L., Jenkins G. H., Fukami K., Takenawa T., Anderson R. A., Martin T. F. ATP-dependent inositide phosphorylation required for Ca(2+)-activated secretion. Nature. 1995 Mar 9;374(6518):173–177. doi: 10.1038/374173a0. [DOI] [PubMed] [Google Scholar]
  19. Higashijima T., Burnier J., Ross E. M. Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of activity. J Biol Chem. 1990 Aug 25;265(24):14176–14186. [PubMed] [Google Scholar]
  20. Howell T. W., Cockcroft S., Gomperts B. D. Essential synergy between Ca2+ and guanine nucleotides in exocytotic secretion from permeabilized rat mast cells. J Cell Biol. 1987 Jul;105(1):191–197. doi: 10.1083/jcb.105.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Howell T. W., Gomperts B. D. Rat mast cells permeabilised with streptolysin O secrete histamine in response to Ca2+ at concentrations buffered in the micromolar range. Biochim Biophys Acta. 1987 Feb 18;927(2):177–183. doi: 10.1016/0167-4889(87)90132-7. [DOI] [PubMed] [Google Scholar]
  22. Howell T. W., Kramer I. M., Gomperts B. D. Protein phosphorylation and the dependence on Ca2+ and GTP-gamma-S for exocytosis from permeabilised mast cells. Cell Signal. 1989;1(2):157–163. doi: 10.1016/0898-6568(89)90005-3. [DOI] [PubMed] [Google Scholar]
  23. Jones P. M., Mann F. M., Persaud S. J., Wheeler-Jones C. P. Mastoparan stimulates insulin secretion from pancreatic beta-cells by effects at a late stage in the secretory pathway. Mol Cell Endocrinol. 1993 Jul;94(1):97–103. doi: 10.1016/0303-7207(93)90056-p. [DOI] [PubMed] [Google Scholar]
  24. Komatsu M., McDermott A. M., Gillison S. L., Sharp G. W. Mastoparan stimulates exocytosis at a Ca(2+)-independent late site in stimulus-secretion coupling. Studies with the RINm5F beta-cell line. J Biol Chem. 1993 Nov 5;268(31):23297–23306. [PubMed] [Google Scholar]
  25. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  26. Lang J., Nishimoto I., Okamoto T., Regazzi R., Kiraly C., Weller U., Wollheim C. B. Direct control of exocytosis by receptor-mediated activation of the heterotrimeric GTPases Gi and G(o) or by the expression of their active G alpha subunits. EMBO J. 1995 Aug 1;14(15):3635–3644. doi: 10.1002/j.1460-2075.1995.tb00033.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Larbi K. Y., Gomperts B. D. Practical considerations regarding the use of streptolysin-O as a permeabilising agent for cells in the investigation of exocytosis. Biosci Rep. 1996 Feb;16(1):11–21. doi: 10.1007/BF01200997. [DOI] [PubMed] [Google Scholar]
  28. Lillie T. H., Gomperts B. D. Guanine nucleotide is essential and Ca2+ is a modulator in the exocytotic reaction of permeabilized rat mast cells. Biochem J. 1992 Nov 15;288(Pt 1):181–187. doi: 10.1042/bj2880181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lindau M., Gomperts B. D. Techniques and concepts in exocytosis: focus on mast cells. Biochim Biophys Acta. 1991 Dec 12;1071(4):429–471. doi: 10.1016/0304-4157(91)90006-i. [DOI] [PubMed] [Google Scholar]
  30. Logothetis D. E., Kim D. H., Northup J. K., Neer E. J., Clapham D. E. Specificity of action of guanine nucleotide-binding regulatory protein subunits on the cardiac muscarinic K+ channel. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5814–5818. doi: 10.1073/pnas.85.16.5814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mariot P., O'Sullivan A. J., Brown A. M., Tatham P. E. Rho guanine nucleotide dissociation inhibitor protein (RhoGDI) inhibits exocytosis in mast cells. EMBO J. 1996 Dec 2;15(23):6476–6482. [PMC free article] [PubMed] [Google Scholar]
  32. Marquardt D. L., Gruber H. E., Walker L. L. Ribavirin inhibits mast cell mediator release. J Pharmacol Exp Ther. 1987 Jan;240(1):145–149. [PubMed] [Google Scholar]
  33. Matsuda M., Okabe T., Sugimoto N., Senda T., Fujita H. Tetanus toxin and Clostridium perfringens enterotoxin as tools for the study of exocytosis. Ann N Y Acad Sci. 1994 Mar 9;710:94–106. doi: 10.1111/j.1749-6632.1994.tb26617.x. [DOI] [PubMed] [Google Scholar]
  34. Metzger H. The receptor with high affinity for IgE. Immunol Rev. 1992 Feb;125:37–48. doi: 10.1111/j.1600-065x.1992.tb00624.x. [DOI] [PubMed] [Google Scholar]
  35. Mumby S. M., Linder M. E. Myristoylation of G-protein alpha subunits. Methods Enzymol. 1994;237:254–268. doi: 10.1016/s0076-6879(94)37067-2. [DOI] [PubMed] [Google Scholar]
  36. Müller S., Hekman M., Lohse M. J. Specific enhancement of beta-adrenergic receptor kinase activity by defined G-protein beta and gamma subunits. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10439–10443. doi: 10.1073/pnas.90.22.10439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Neer E. J., Clapham D. E. Roles of G protein subunits in transmembrane signalling. Nature. 1988 May 12;333(6169):129–134. doi: 10.1038/333129a0. [DOI] [PubMed] [Google Scholar]
  38. Nishizaki T., Walent J. H., Kowalchyk J. A., Martin T. F. A key role for a 145-kDa cytosolic protein in the stimulation of Ca(2+)-dependent secretion by protein kinase C. J Biol Chem. 1992 Nov 25;267(33):23972–23981. [PubMed] [Google Scholar]
  39. Northup J. K., Smigel M. D., Gilman A. G. The guanine nucleotide activating site of the regulatory component of adenylate cyclase. Identification by ligand binding. J Biol Chem. 1982 Oct 10;257(19):11416–11423. [PubMed] [Google Scholar]
  40. O'Sullivan A. J., Brown A. M., Freeman H. N., Gomperts B. D. Purification and identification of FOAD-II, a cytosolic protein that regulates secretion in streptolysin-O permeabilized mast cells, as a rac/rhoGDI complex. Mol Biol Cell. 1996 Mar;7(3):397–408. doi: 10.1091/mbc.7.3.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Park D. J., Min H. K., Rhee S. G. IgE-induced tyrosine phosphorylation of phospholipase C-gamma 1 in rat basophilic leukemia cells. J Biol Chem. 1991 Dec 25;266(36):24237–24240. [PubMed] [Google Scholar]
  42. Rasenick M. M., Watanabe M., Lazarevic M. B., Hatta S., Hamm H. E. Synthetic peptides as probes for G protein function. Carboxyl-terminal G alpha s peptides mimic Gs and evoke high affinity agonist binding to beta-adrenergic receptors. J Biol Chem. 1994 Aug 26;269(34):21519–21525. [PubMed] [Google Scholar]
  43. Saito H., Okajima F., Molski T. F., Sha'afi R. I., Ui M., Ishizaka T. Effects of ADP-ribosylation of GTP-binding protein by pertussis toxin on immunoglobulin E-dependent and -independent histamine release from mast cells and basophils. J Immunol. 1987 Jun 1;138(11):3927–3934. [PubMed] [Google Scholar]
  44. Saraste M., Hyvönen M. Pleckstrin homology domains: a fact file. Curr Opin Struct Biol. 1995 Jun;5(3):403–408. doi: 10.1016/0959-440x(95)80104-9. [DOI] [PubMed] [Google Scholar]
  45. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  46. Takai Y., Kishimoto A., Iwasa Y., Kawahara Y., Mori T., Nishizuka Y. Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. J Biol Chem. 1979 May 25;254(10):3692–3695. [PubMed] [Google Scholar]
  47. Tanaka K., Sasaki T., Takai Y. Purification and properties of recombinant Rho-GDP dissociation inhibitor. Methods Enzymol. 1995;256:41–49. doi: 10.1016/0076-6879(95)56008-4. [DOI] [PubMed] [Google Scholar]
  48. Tatham P. E., Gomperts B. D. Rat mast cells degranulate in response to microinjection of guanine nucleotide. J Cell Sci. 1991 Feb;98(Pt 2):217–224. doi: 10.1242/jcs.98.2.217. [DOI] [PubMed] [Google Scholar]
  49. Touhara K., Inglese J., Pitcher J. A., Shaw G., Lefkowitz R. J. Binding of G protein beta gamma-subunits to pleckstrin homology domains. J Biol Chem. 1994 Apr 8;269(14):10217–10220. [PubMed] [Google Scholar]
  50. Touhara K., Koch W. J., Hawes B. E., Lefkowitz R. J. Mutational analysis of the pleckstrin homology domain of the beta-adrenergic receptor kinase. Differential effects on G beta gamma and phosphatidylinositol 4,5-bisphosphate binding. J Biol Chem. 1995 Jul 14;270(28):17000–17005. doi: 10.1074/jbc.270.28.17000. [DOI] [PubMed] [Google Scholar]
  51. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Vallar L., Biden T. J., Wollheim C. B. Guanine nucleotides induce Ca2+-independent insulin secretion from permeabilized RINm5F cells. J Biol Chem. 1987 Apr 15;262(11):5049–5056. [PubMed] [Google Scholar]
  53. Vlahos C. J., Matter W. F., Hui K. Y., Brown R. F. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem. 1994 Feb 18;269(7):5241–5248. [PubMed] [Google Scholar]
  54. Whitehead I., Kirk H., Kay R. Retroviral transduction and oncogenic selection of a cDNA encoding Dbs, a homolog of the Dbl guanine nucleotide exchange factor. Oncogene. 1995 Feb 16;10(4):713–721. [PubMed] [Google Scholar]
  55. Whitehead I., Kirk H., Tognon C., Trigo-Gonzalez G., Kay R. Expression cloning of lfc, a novel oncogene with structural similarities to guanine nucleotide exchange factors and to the regulatory region of protein kinase C. J Biol Chem. 1995 Aug 4;270(31):18388–18395. doi: 10.1074/jbc.270.31.18388. [DOI] [PubMed] [Google Scholar]
  56. Wilson B. S., Deanin G. G., Standefer J. C., Vanderjagt D., Oliver J. M. Depletion of guanine nucleotides with mycophenolic acid suppresses IgE receptor-mediated degranulation in rat basophilic leukemia cells. J Immunol. 1989 Jul 1;143(1):259–265. [PubMed] [Google Scholar]
  57. Xu J., Wu D., Slepak V. Z., Simon M. I. The N terminus of phosducin is involved in binding of beta gamma subunits of G protein. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2086–2090. doi: 10.1073/pnas.92.6.2086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Zhang H., Yasrebi-Nejad H., Lang J. G-protein betagamma-binding domains regulate insulin exocytosis in clonal pancreatic beta-cells. FEBS Lett. 1998 Mar 13;424(3):202–206. doi: 10.1016/s0014-5793(98)00176-8. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES