Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Nov 2;17(21):6263–6275. doi: 10.1093/emboj/17.21.6263

A role for trigger factor and an rgg-like regulator in the transcription, secretion and processing of the cysteine proteinase of Streptococcus pyogenes.

W R Lyon 1, C M Gibson 1, M G Caparon 1
PMCID: PMC1170952  PMID: 9799235

Abstract

The ability of numerous microorganisms to cause disease relies upon the highly regulated expression of secreted proteinases. In this study, mutagenesis with a novel derivative of Tn4001 was used to identify genes required for the expression of the secreted cysteine proteinase (SCP) of the pathogenic Gram-positive bacterium Streptococcus pyogenes. Designated as Rop loci (regulation of proteinase), ropB is a rgg-like transcriptional activator required for transcription of the gene which encodes the proteinase. In contrast, ropA contributes post-transcriptionally to the secretion and processing of SCP and encodes a homologue of Trigger Factor, a peptidyl-prolyl isomerase and putative chaparone which is highly conserved in most bacterial species, but of unknown function. Analysis of additional ropA mutants demonstrated that RopA acts both to assist in targeting SCP to the secretory pathway and to promote the ability of the proprotein to establish an active conformation upon secretion. This latter function was dependent upon the peptidyl-prolyl isomerase domain of RopA and mutants that lacked this domain exhibited a bipartite deficiency manifested as a kinetic defect in autologous processing of the proprotein to the mature proteinase, and as a catalytic defect in the mature proteinase. These results provide insight into the function of Trigger Factor, the regulation of proteinase activity and the mechanism of secretion in Gram-positive bacteria.

Full Text

The Full Text of this article is available as a PDF (469.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aono R. Accumulation of alkaliphilic Bacillus penicillinase cleaved within the signal sequence in cytoplasm of Escherichia coli. Biosci Biotechnol Biochem. 1992 Jun;56(6):890–895. doi: 10.1271/bbb.56.890. [DOI] [PubMed] [Google Scholar]
  3. Beck E., Bremer E. Nucleotide sequence of the gene ompA coding the outer membrane protein II of Escherichia coli K-12. Nucleic Acids Res. 1980 Jul 11;8(13):3011–3027. doi: 10.1093/nar/8.13.3011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berge A., Björck L. Streptococcal cysteine proteinase releases biologically active fragments of streptococcal surface proteins. J Biol Chem. 1995 Apr 28;270(17):9862–9867. doi: 10.1074/jbc.270.17.9862. [DOI] [PubMed] [Google Scholar]
  5. Bisno A. L., Stevens D. L. Streptococcal infections of skin and soft tissues. N Engl J Med. 1996 Jan 25;334(4):240–245. doi: 10.1056/NEJM199601253340407. [DOI] [PubMed] [Google Scholar]
  6. Björck L., Akesson P., Bohus M., Trojnar J., Abrahamson M., Olafsson I., Grubb A. Bacterial growth blocked by a synthetic peptide based on the structure of a human proteinase inhibitor. Nature. 1989 Jan 26;337(6205):385–386. doi: 10.1038/337385a0. [DOI] [PubMed] [Google Scholar]
  7. Boyer H. W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. doi: 10.1016/0022-2836(69)90288-5. [DOI] [PubMed] [Google Scholar]
  8. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  9. Burns E. H., Jr, Marciel A. M., Musser J. M. Activation of a 66-kilodalton human endothelial cell matrix metalloprotease by Streptococcus pyogenes extracellular cysteine protease. Infect Immun. 1996 Nov;64(11):4744–4750. doi: 10.1128/iai.64.11.4744-4750.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Byrne M. E., Rouch D. A., Skurray R. A. Nucleotide sequence analysis of IS256 from the Staphylococcus aureus gentamicin-tobramycin-kanamycin-resistance transposon Tn4001. Gene. 1989 Sep 30;81(2):361–367. doi: 10.1016/0378-1119(89)90197-2. [DOI] [PubMed] [Google Scholar]
  11. Cao J., Kapke P. A., Minion F. C. Transformation of Mycoplasma gallisepticum with Tn916, Tn4001, and integrative plasmid vectors. J Bacteriol. 1994 Jul;176(14):4459–4462. doi: 10.1128/jb.176.14.4459-4462.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Caparon M. G., Scott J. R. Genetic manipulation of pathogenic streptococci. Methods Enzymol. 1991;204:556–586. doi: 10.1016/0076-6879(91)04028-m. [DOI] [PubMed] [Google Scholar]
  13. Chaussee M. S., Gerlach D., Yu C. E., Ferretti J. J. Inactivation of the streptococcal erythrogenic toxin B gene (speB) in Streptococcus pyogenes. Infect Immun. 1993 Sep;61(9):3719–3723. doi: 10.1128/iai.61.9.3719-3723.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chaussee M. S., Phillips E. R., Ferretti J. J. Temporal production of streptococcal erythrogenic toxin B (streptococcal cysteine proteinase) in response to nutrient depletion. Infect Immun. 1997 May;65(5):1956–1959. doi: 10.1128/iai.65.5.1956-1959.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cheung A. L., Eberhardt K. J., Fischetti V. A. A method to isolate RNA from gram-positive bacteria and mycobacteria. Anal Biochem. 1994 Nov 1;222(2):511–514. doi: 10.1006/abio.1994.1528. [DOI] [PubMed] [Google Scholar]
  16. Chung S. I., Lee S. Y., Uchino R., Carmassi F. Factors that control extravascular fibrinolysis. Semin Thromb Hemost. 1996;22(6):479–488. doi: 10.1055/s-2007-999048. [DOI] [PubMed] [Google Scholar]
  17. Corcoran M. L., Kleiner D. E., Jr, Stetler-Stevenson W. G. Regulation of matrix metalloproteinases during extracellular matrix turnover. Adv Exp Med Biol. 1995;385:151–184. doi: 10.1007/978-1-4899-1585-6_18. [DOI] [PubMed] [Google Scholar]
  18. Crooke E., Brundage L., Rice M., Wickner W. ProOmpA spontaneously folds in a membrane assembly competent state which trigger factor stabilizes. EMBO J. 1988 Jun;7(6):1831–1835. doi: 10.1002/j.1460-2075.1988.tb03015.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Crooke E., Wickner W. Trigger factor: a soluble protein that folds pro-OmpA into a membrane-assembly-competent form. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5216–5220. doi: 10.1073/pnas.84.15.5216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gerlach D., Knöll H., Köhler W., Ozegowski J. H., Hríbalova V. Isolation and characterization of erythrogenic toxins. V. Communication: identity of erythrogenic toxin type B and streptococcal proteinase precursor. Zentralbl Bakteriol Mikrobiol Hyg A. 1983 Sep;255(2-3):221–233. [PubMed] [Google Scholar]
  21. Goguen J. D., Hoe N. P., Subrahmanyam Y. V. Proteases and bacterial virulence: a view from the trenches. Infect Agents Dis. 1995 Mar;4(1):47–54. [PubMed] [Google Scholar]
  22. Gottesman S., Clark W. P., de Crecy-Lagard V., Maurizi M. R. ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli. Sequence and in vivo activities. J Biol Chem. 1993 Oct 25;268(30):22618–22626. [PubMed] [Google Scholar]
  23. Guthrie B., Wickner W. Trigger factor depletion or overproduction causes defective cell division but does not block protein export. J Bacteriol. 1990 Oct;172(10):5555–5562. doi: 10.1128/jb.172.10.5555-5562.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Göthel S. F., Schmid R., Wipat A., Carter N. M., Emmerson P. T., Harwood C. R., Marahiel M. A. An internal FK506-binding domain is the catalytic core of the prolyl isomerase activity associated with the Bacillus subtilis trigger factor. Eur J Biochem. 1997 Feb 15;244(1):59–65. doi: 10.1111/j.1432-1033.1997.00059.x. [DOI] [PubMed] [Google Scholar]
  25. Haandrikman A. J., Meesters R., Laan H., Konings W. N., Kok J., Venema G. Processing of the lactococcal extracellular serine proteinase. Appl Environ Microbiol. 1991 Jul;57(7):1899–1904. doi: 10.1128/aem.57.7.1899-1904.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hanski E., Caparon M. Protein F, a fibronectin-binding protein, is an adhesin of the group A streptococcus Streptococcus pyogenes. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6172–6176. doi: 10.1073/pnas.89.13.6172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hauser A. R., Schlievert P. M. Nucleotide sequence of the streptococcal pyrogenic exotoxin type B gene and relationship between the toxin and the streptococcal proteinase precursor. J Bacteriol. 1990 Aug;172(8):4536–4542. doi: 10.1128/jb.172.8.4536-4542.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Herwald H., Collin M., Müller-Esterl W., Björck L. Streptococcal cysteine proteinase releases kinins: a virulence mechanism. J Exp Med. 1996 Aug 1;184(2):665–673. doi: 10.1084/jem.184.2.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hesterkamp T., Bukau B. Identification of the prolyl isomerase domain of Escherichia coli trigger factor. FEBS Lett. 1996 Apr 29;385(1-2):67–71. doi: 10.1016/0014-5793(96)00351-1. [DOI] [PubMed] [Google Scholar]
  30. Ji Y., McLandsborough L., Kondagunta A., Cleary P. P. C5a peptidase alters clearance and trafficking of group A streptococci by infected mice. Infect Immun. 1996 Feb;64(2):503–510. doi: 10.1128/iai.64.2.503-510.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kandror O., Sherman M., Moerschell R., Goldberg A. L. Trigger factor associates with GroEL in vivo and promotes its binding to certain polypeptides. J Biol Chem. 1997 Jan 17;272(3):1730–1734. doi: 10.1074/jbc.272.3.1730. [DOI] [PubMed] [Google Scholar]
  32. Kandror O., Sherman M., Rhode M., Goldberg A. L. Trigger factor is involved in GroEL-dependent protein degradation in Escherichia coli and promotes binding of GroEL to unfolded proteins. EMBO J. 1995 Dec 1;14(23):6021–6027. doi: 10.1002/j.1460-2075.1995.tb00290.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kapur V., Maffei J. T., Greer R. S., Li L. L., Adams G. J., Musser J. M. Vaccination with streptococcal extracellular cysteine protease (interleukin-1 beta convertase) protects mice against challenge with heterologous group A streptococci. Microb Pathog. 1994 Jun;16(6):443–450. doi: 10.1006/mpat.1994.1044. [DOI] [PubMed] [Google Scholar]
  34. Kapur V., Majesky M. W., Li L. L., Black R. A., Musser J. M. Cleavage of interleukin 1 beta (IL-1 beta) precursor to produce active IL-1 beta by a conserved extracellular cysteine protease from Streptococcus pyogenes. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7676–7680. doi: 10.1073/pnas.90.16.7676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kapur V., Topouzis S., Majesky M. W., Li L. L., Hamrick M. R., Hamill R. J., Patti J. M., Musser J. M. A conserved Streptococcus pyogenes extracellular cysteine protease cleaves human fibronectin and degrades vitronectin. Microb Pathog. 1993 Nov;15(5):327–346. doi: 10.1006/mpat.1993.1083. [DOI] [PubMed] [Google Scholar]
  36. Kidd V. J. Proteolytic activities that mediate apoptosis. Annu Rev Physiol. 1998;60:533–573. doi: 10.1146/annurev.physiol.60.1.533. [DOI] [PubMed] [Google Scholar]
  37. Knudtson K. L., Minion F. C. Construction of Tn4001lac derivatives to be used as promoter probe vectors in mycoplasmas. Gene. 1993 Dec 31;137(2):217–222. doi: 10.1016/0378-1119(93)90009-r. [DOI] [PubMed] [Google Scholar]
  38. Lampe M., Binnie C., Schmidt R., Losick R. Cloned gene encoding the delta subunit of Bacillus subtilis RNA polymerase. Gene. 1988 Jul 15;67(1):13–19. doi: 10.1016/0378-1119(88)90003-0. [DOI] [PubMed] [Google Scholar]
  39. Lantz M. S. Are bacterial proteases important virulence factors? J Periodontal Res. 1997 Jan;32(1 Pt 2):126–132. doi: 10.1111/j.1600-0765.1997.tb01393.x. [DOI] [PubMed] [Google Scholar]
  40. LeBlanc D. J., Lee L. N., Inamine J. M. Cloning and nucleotide base sequence analysis of a spectinomycin adenyltransferase AAD(9) determinant from Enterococcus faecalis. Antimicrob Agents Chemother. 1991 Sep;35(9):1804–1810. doi: 10.1128/aac.35.9.1804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Lecker S., Lill R., Ziegelhoffer T., Georgopoulos C., Bassford P. J., Jr, Kumamoto C. A., Wickner W. Three pure chaperone proteins of Escherichia coli--SecB, trigger factor and GroEL--form soluble complexes with precursor proteins in vitro. EMBO J. 1989 Sep;8(9):2703–2709. doi: 10.1002/j.1460-2075.1989.tb08411.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Lill R., Crooke E., Guthrie B., Wickner W. The "trigger factor cycle" includes ribosomes, presecretory proteins, and the plasma membrane. Cell. 1988 Sep 23;54(7):1013–1018. doi: 10.1016/0092-8674(88)90116-x. [DOI] [PubMed] [Google Scholar]
  43. Lukomski S., Burns E. H., Jr, Wyde P. R., Podbielski A., Rurangirwa J., Moore-Poveda D. K., Musser J. M. Genetic inactivation of an extracellular cysteine protease (SpeB) expressed by Streptococcus pyogenes decreases resistance to phagocytosis and dissemination to organs. Infect Immun. 1998 Feb;66(2):771–776. doi: 10.1128/iai.66.2.771-776.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Lukomski S., Sreevatsan S., Amberg C., Reichardt W., Woischnik M., Podbielski A., Musser J. M. Inactivation of Streptococcus pyogenes extracellular cysteine protease significantly decreases mouse lethality of serotype M3 and M49 strains. J Clin Invest. 1997 Jun 1;99(11):2574–2580. doi: 10.1172/JCI119445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Lunsford R. D. A Tn4001 delivery system for Streptococcus gordonii (Challis). Plasmid. 1995 Mar;33(2):153–157. doi: 10.1006/plas.1995.1016. [DOI] [PubMed] [Google Scholar]
  46. Lunsford R. D., Roble A. G. comYA, a gene similar to comGA of Bacillus subtilis, is essential for competence-factor-dependent DNA transformation in Streptococcus gordonii. J Bacteriol. 1997 May;179(10):3122–3126. doi: 10.1128/jb.179.10.3122-3126.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Mahairas G. G., Lyon B. R., Skurray R. A., Pattee P. A. Genetic analysis of Staphylococcus aureus with Tn4001. J Bacteriol. 1989 Jul;171(7):3968–3972. doi: 10.1128/jb.171.7.3968-3972.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Manoil C., Beckwith J. TnphoA: a transposon probe for protein export signals. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8129–8133. doi: 10.1073/pnas.82.23.8129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Marchuk D., Drumm M., Saulino A., Collins F. S. Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res. 1991 Mar 11;19(5):1154–1154. doi: 10.1093/nar/19.5.1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Masure S., Opdenakker G. Cytokine-mediated proteolysis in tissue remodelling. Experientia. 1989 Jun 15;45(6):542–549. doi: 10.1007/BF01990504. [DOI] [PubMed] [Google Scholar]
  51. Musser J. M., Stockbauer K., Kapur V., Rudgers G. W. Substitution of cysteine 192 in a highly conserved Streptococcus pyogenes extracellular cysteine protease (interleukin 1beta convertase) alters proteolytic activity and ablates zymogen processing. Infect Immun. 1996 Jun;64(6):1913–1917. doi: 10.1128/iai.64.6.1913-1917.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Okada N., Geist R. T., Caparon M. G. Positive transcriptional control of mry regulates virulence in the group A streptococcus. Mol Microbiol. 1993 Mar;7(6):893–903. doi: 10.1111/j.1365-2958.1993.tb01180.x. [DOI] [PubMed] [Google Scholar]
  53. Pancholi V., Fischetti V. A. A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J Exp Med. 1992 Aug 1;176(2):415–426. doi: 10.1084/jem.176.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Pancholi V., Fischetti V. A. Identification of an endogenous membrane anchor-cleaving enzyme for group A streptococcal M protein. Its implication for the attachment of surface proteins in gram-positive bacteria. J Exp Med. 1989 Dec 1;170(6):2119–2133. doi: 10.1084/jem.170.6.2119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Pancholi V., Fischetti V. A. alpha-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem. 1998 Jun 5;273(23):14503–14515. doi: 10.1074/jbc.273.23.14503. [DOI] [PubMed] [Google Scholar]
  56. Pepper M. S., Montesano R., Mandriota S. J., Orci L., Vassalli J. D. Angiogenesis: a paradigm for balanced extracellular proteolysis during cell migration and morphogenesis. Enzyme Protein. 1996;49(1-3):138–162. doi: 10.1159/000468622. [DOI] [PubMed] [Google Scholar]
  57. Perez-Casal J., Caparon M. G., Scott J. R. Mry, a trans-acting positive regulator of the M protein gene of Streptococcus pyogenes with similarity to the receptor proteins of two-component regulatory systems. J Bacteriol. 1991 Apr;173(8):2617–2624. doi: 10.1128/jb.173.8.2617-2624.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Pissavin C., Hugouvieux-Cotte-Pattat N. Characterization of a periplasmic peptidyl-prolyl cis-trans isomerase in Erwinia chrysanthemi. FEMS Microbiol Lett. 1997 Dec 1;157(1):59–65. doi: 10.1111/j.1574-6968.1997.tb12753.x. [DOI] [PubMed] [Google Scholar]
  59. Podbielski A., Pohl B., Woischnik M., Körner C., Schmidt K. H., Rozdzinski E., Leonard B. A. Molecular characterization of group A streptococcal (GAS) oligopeptide permease (opp) and its effect on cysteine protease production. Mol Microbiol. 1996 Sep;21(5):1087–1099. doi: 10.1046/j.1365-2958.1996.661421.x. [DOI] [PubMed] [Google Scholar]
  60. Rahfeld J. U., Rücknagel K. P., Schelbert B., Ludwig B., Hacker J., Mann K., Fischer G. Confirmation of the existence of a third family among peptidyl-prolyl cis/trans isomerases. Amino acid sequence and recombinant production of parvulin. FEBS Lett. 1994 Sep 26;352(2):180–184. doi: 10.1016/0014-5793(94)00932-5. [DOI] [PubMed] [Google Scholar]
  61. Rosenthal A. L., Lacks S. A. Nuclease detection in SDS-polyacrylamide gel electrophoresis. Anal Biochem. 1977 May 15;80(1):76–90. doi: 10.1016/0003-2697(77)90627-3. [DOI] [PubMed] [Google Scholar]
  62. Ruiz N., Wang B., Pentland A., Caparon M. Streptolysin O and adherence synergistically modulate proinflammatory responses of keratinocytes to group A streptococci. Mol Microbiol. 1998 Jan;27(2):337–346. doi: 10.1046/j.1365-2958.1998.00681.x. [DOI] [PubMed] [Google Scholar]
  63. Sanders J. W., Leenhouts K., Burghoorn J., Brands J. R., Venema G., Kok J. A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol Microbiol. 1998 Jan;27(2):299–310. doi: 10.1046/j.1365-2958.1998.00676.x. [DOI] [PubMed] [Google Scholar]
  64. Scott J. R. A turbid plaque-forming mutant of phage P1 that cannot lysogenize Escherichia coli. Virology. 1974 Dec;62(2):344–349. doi: 10.1016/0042-6822(74)90397-3. [DOI] [PubMed] [Google Scholar]
  65. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  66. Stoller G., Rücknagel K. P., Nierhaus K. H., Schmid F. X., Fischer G., Rahfeld J. U. A ribosome-associated peptidyl-prolyl cis/trans isomerase identified as the trigger factor. EMBO J. 1995 Oct 16;14(20):4939–4948. doi: 10.1002/j.1460-2075.1995.tb00177.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Stoller G., Tradler T., Rücknagel K. P., Rahfeld J-U, Fischer G. An 11.8 kDa proteolytic fragment of the E. coli trigger factor represents the domain carrying the peptidyl-prolyl cis/trans isomerase activity. FEBS Lett. 1996 Apr 15;384(2):117–122. doi: 10.1016/0014-5793(96)00282-7. [DOI] [PubMed] [Google Scholar]
  68. Sulavik M. C., Tardif G., Clewell D. B. Identification of a gene, rgg, which regulates expression of glucosyltransferase and influences the Spp phenotype of Streptococcus gordonii Challis. J Bacteriol. 1992 Jun;174(11):3577–3586. doi: 10.1128/jb.174.11.3577-3586.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Tai P. C., Lian J., Yu N. J., Fandl J., Xu H., Vidugiriene J. On protein translocation across bacterial cytoplasmic membranes. Antonie Van Leeuwenhoek. 1992 Feb;61(2):105–109. doi: 10.1007/BF00580615. [DOI] [PubMed] [Google Scholar]
  70. Talkington D. F., Schwartz B., Black C. M., Todd J. K., Elliott J., Breiman R. F., Facklam R. R. Association of phenotypic and genotypic characteristics of invasive Streptococcus pyogenes isolates with clinical components of streptococcal toxic shock syndrome. Infect Immun. 1993 Aug;61(8):3369–3374. doi: 10.1128/iai.61.8.3369-3374.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Tsai P. J., Kuo C. F., Lin K. Y., Lin Y. S., Lei H. Y., Chen F. F., Wang J. R., Wu J. J. Effect of group A streptococcal cysteine protease on invasion of epithelial cells. Infect Immun. 1998 Apr;66(4):1460–1466. doi: 10.1128/iai.66.4.1460-1466.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Vickerman M. M., Sulavik M. C., Nowak J. D., Gardner N. M., Jones G. W., Clewell D. B. Nucleotide sequence analysis of the Streptococcus gordonii glucosyltransferase gene, gtfG. DNA Seq. 1997;7(2):83–95. doi: 10.3109/10425179709020155. [DOI] [PubMed] [Google Scholar]
  73. Wandersman C. Secretion, processing and activation of bacterial extracellular proteases. Mol Microbiol. 1989 Dec;3(12):1825–1831. doi: 10.1111/j.1365-2958.1989.tb00169.x. [DOI] [PubMed] [Google Scholar]
  74. Warth R., Briand P. A., Picard D. Functional analysis of the yeast 40 kDa cyclophilin Cyp40 and its role for viability and steroid receptor regulation. Biol Chem. 1997 May;378(5):381–391. doi: 10.1515/bchm.1997.378.5.381. [DOI] [PubMed] [Google Scholar]
  75. Wong W. W. ICE family proteases in inflammation and apoptosis. Agents Actions Suppl. 1998;49:5–13. doi: 10.1007/978-3-0348-8857-8_2. [DOI] [PubMed] [Google Scholar]
  76. Yu C. E., Ferretti J. J. Frequency of the erythrogenic toxin B and C genes (speB and speC) among clinical isolates of group A streptococci. Infect Immun. 1991 Jan;59(1):211–215. doi: 10.1128/iai.59.1.211-215.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Zarnt T., Tradler T., Stoller G., Scholz C., Schmid F. X., Fischer G. Modular structure of the trigger factor required for high activity in protein folding. J Mol Biol. 1997 Sep 5;271(5):827–837. doi: 10.1006/jmbi.1997.1206. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES