Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Nov 2;17(21):6377–6384. doi: 10.1093/emboj/17.21.6377

The NMR structure of Escherichia coli ribosomal protein L25 shows homology to general stress proteins and glutaminyl-tRNA synthetases.

M Stoldt 1, J Wöhnert 1, M Görlach 1, L R Brown 1
PMCID: PMC1170962  PMID: 9799245

Abstract

The structure of the Escherichia coli ribosomal protein L25 has been determined to an r.m.s. displacement of backbone heavy atoms of 0.62 +/- 0.14 A by multi-dimensional heteronuclear NMR spectroscopy on protein samples uniformly labeled with 15N or 15N/13C. L25 shows a new topology for RNA-binding proteins consisting of a six-stranded beta-barrel and two alpha-helices. A putative RNA-binding surface for L25 has been obtained by comparison of backbone 15N chemical shifts for L25 with and without a bound cognate RNA containing the eubacterial E-loop that is the site for binding of L25 to 5S ribosomal RNA. Sequence comparisons with related proteins, including the general stress protein, CTC, show that the residues involved in RNA binding are highly conserved, thereby providing further confirmation of the binding surface. Tertiary structure comparisons indicate that the six-stranded beta-barrels of L25 and of the tRNA anticodon-binding domain of glutaminyl-tRNA synthetase are similar.

Full Text

The Full Text of this article is available as a PDF (470.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allain F. H., Gubser C. C., Howe P. W., Nagai K., Neuhaus D., Varani G. Specificity of ribonucleoprotein interaction determined by RNA folding during complex formulation. Nature. 1996 Apr 18;380(6575):646–650. doi: 10.1038/380646a0. [DOI] [PubMed] [Google Scholar]
  2. Battiste J. L., Mao H., Rao N. S., Tan R., Muhandiram D. R., Kay L. E., Frankel A. D., Williamson J. R. Alpha helix-RNA major groove recognition in an HIV-1 rev peptide-RRE RNA complex. Science. 1996 Sep 13;273(5281):1547–1551. doi: 10.1126/science.273.5281.1547. [DOI] [PubMed] [Google Scholar]
  3. Betzel C., Lorenz S., Fürste J. P., Bald R., Zhang M., Schneider T. R., Wilson K. S., Erdmann V. A. Crystal structure of domain A of Thermus flavus 5S rRNA and the contribution of water molecules to its structure. FEBS Lett. 1994 Sep 5;351(2):159–164. doi: 10.1016/0014-5793(94)00834-5. [DOI] [PubMed] [Google Scholar]
  4. Bitar K. G., Wittmann-Liebold B. The primary structure of the 5s rRNA binding protein L25 of Escherichia coli ribosomes. Hoppe Seylers Z Physiol Chem. 1975 Sep;356(9):1343–1352. doi: 10.1515/bchm2.1975.356.2.1343. [DOI] [PubMed] [Google Scholar]
  5. Brimacombe R. The structure of ribosomal RNA: a three-dimensional jigsaw puzzle. Eur J Biochem. 1995 Jun 1;230(2):365–383. [PubMed] [Google Scholar]
  6. Bycroft M., Hubbard T. J., Proctor M., Freund S. M., Murzin A. G. The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold. Cell. 1997 Jan 24;88(2):235–242. doi: 10.1016/s0092-8674(00)81844-9. [DOI] [PubMed] [Google Scholar]
  7. Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Kundrot C. E., Cech T. R., Doudna J. A. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science. 1996 Sep 20;273(5282):1678–1685. doi: 10.1126/science.273.5282.1678. [DOI] [PubMed] [Google Scholar]
  8. Cavarelli J., Rees B., Ruff M., Thierry J. C., Moras D. Yeast tRNA(Asp) recognition by its cognate class II aminoacyl-tRNA synthetase. Nature. 1993 Mar 11;362(6416):181–184. doi: 10.1038/362181a0. [DOI] [PubMed] [Google Scholar]
  9. Chen-Schmeisser U., Garrett R. A. A new method for the isolation of a 5 S RNA complex with proteins L5, L18 and L25 from Escherichia coli ribosomes. FEBS Lett. 1977 Mar 1;74(2):287–291. doi: 10.1016/0014-5793(77)80866-1. [DOI] [PubMed] [Google Scholar]
  10. Ciesiołka J., Lorenz S., Erdmann V. A. Structural analysis of three prokaryotic 5S rRNA species and selected 5S rRNA--ribosomal-protein complexes by means of Pb(II)-induced hydrolysis. Eur J Biochem. 1992 Mar 1;204(2):575–581. doi: 10.1111/j.1432-1033.1992.tb16670.x. [DOI] [PubMed] [Google Scholar]
  11. Correll C. C., Freeborn B., Moore P. B., Steitz T. A. Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Cell. 1997 Nov 28;91(5):705–712. doi: 10.1016/s0092-8674(00)80457-2. [DOI] [PubMed] [Google Scholar]
  12. Dallas A., Moore P. B. The loop E-loop D region of Escherichia coli 5S rRNA: the solution structure reveals an unusual loop that may be important for binding ribosomal proteins. Structure. 1997 Dec 15;5(12):1639–1653. doi: 10.1016/s0969-2126(97)00311-0. [DOI] [PubMed] [Google Scholar]
  13. Davies C., White S. W., Ramakrishnan V. The crystal structure of ribosomal protein L14 reveals an important organizational component of the translational apparatus. Structure. 1996 Jan 15;4(1):55–66. doi: 10.1016/s0969-2126(96)00009-3. [DOI] [PubMed] [Google Scholar]
  14. Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995 Nov;6(3):277–293. doi: 10.1007/BF00197809. [DOI] [PubMed] [Google Scholar]
  15. Dontsova O., Tishkov V., Dokudovskaya S., Bogdanov A., Döring T., Rinke-Appel J., Thamm S., Greuer B., Brimacombe R. Stem-loop IV of 5S rRNA lies close to the peptidyltransferase center. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4125–4129. doi: 10.1073/pnas.91.10.4125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Douthwaite S., Garrett R. A., Wagner R., Feunteun J. A ribonuclease-resistant region of 5S RNA and its relation to the RNA binding sites of proteins L18 and L25. Nucleic Acids Res. 1979 Jun 11;6(7):2453–2470. doi: 10.1093/nar/6.7.2453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Erdmann V. A., Fahnestock S., Higo K., Nomura M. Role of 5S RNA in the functions of 50S ribosomal subunits. Proc Natl Acad Sci U S A. 1971 Dec;68(12):2932–2936. doi: 10.1073/pnas.68.12.2932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  19. Fourmy D., Recht M. I., Blanchard S. C., Puglisi J. D. Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science. 1996 Nov 22;274(5291):1367–1371. doi: 10.1126/science.274.5291.1367. [DOI] [PubMed] [Google Scholar]
  20. Frank J. The ribosome at higher resolution--the donut takes shape. Curr Opin Struct Biol. 1997 Apr;7(2):266–272. doi: 10.1016/s0959-440x(97)80035-8. [DOI] [PubMed] [Google Scholar]
  21. Fraser C. M., Casjens S., Huang W. M., Sutton G. G., Clayton R., Lathigra R., White O., Ketchum K. A., Dodson R., Hickey E. K. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature. 1997 Dec 11;390(6660):580–586. doi: 10.1038/37551. [DOI] [PubMed] [Google Scholar]
  22. Garrett R. A., Noller H. F. Structures of complexes of 5S RNA with ribosomal proteins L5, L18 and L25 from Escherichia coli: identification of kethoxal-reactive sites on the 5S RNA. J Mol Biol. 1979 Aug 25;132(4):637–648. doi: 10.1016/0022-2836(79)90379-6. [DOI] [PubMed] [Google Scholar]
  23. Gongadze G. M., Tishchenko S. V., Sedelnikova S. E., Garber M. B. Ribosomal proteins, TL4 and TL5, from Thermus thermophilus form hybrid complexes with 5 S ribosomal RNA from different microorganisms. FEBS Lett. 1993 Sep 6;330(1):46–48. doi: 10.1016/0014-5793(93)80916-i. [DOI] [PubMed] [Google Scholar]
  24. Gryaznova O. I., Davydova N. L., Gongadze G. M., Jonsson B. H., Garber M. B., Liljas A. A ribosomal protein from Thermus thermophilus is homologous to a general shock protein. Biochimie. 1996;78(11-12):915–919. doi: 10.1016/s0300-9084(97)86713-2. [DOI] [PubMed] [Google Scholar]
  25. Grüne M., Görlach M., Soskic V., Klussmann S., Bald R., Fürste J. P., Erdmann V. A., Brown L. R. Initial analysis of 750 MHz NMR spectra of selective 15N-G,U labelled E. coli 5S rRNA. FEBS Lett. 1996 Apr 29;385(1-2):114–118. doi: 10.1016/0014-5793(96)00361-4. [DOI] [PubMed] [Google Scholar]
  26. Görlach M., Wittekind M., Beckman R. A., Mueller L., Dreyfuss G. Interaction of the RNA-binding domain of the hnRNP C proteins with RNA. EMBO J. 1992 Sep;11(9):3289–3295. doi: 10.1002/j.1460-2075.1992.tb05407.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Güntert P., Braun W., Wüthrich K. Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J Mol Biol. 1991 Feb 5;217(3):517–530. doi: 10.1016/0022-2836(91)90754-t. [DOI] [PubMed] [Google Scholar]
  28. Güntert P., Mumenthaler C., Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol. 1997 Oct 17;273(1):283–298. doi: 10.1006/jmbi.1997.1284. [DOI] [PubMed] [Google Scholar]
  29. Hartmann R. K., Vogel D. W., Walker R. T., Erdmann V. A. In vitro incorporation of eubacterial, archaebacterial and eukaryotic 5S rRNAs into large ribosomal subunits of Bacillus stearothermophilus. Nucleic Acids Res. 1988 Apr 25;16(8):3511–3524. doi: 10.1093/nar/16.8.3511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Hinck A. P., Markus M. A., Huang S., Grzesiek S., Kustonovich I., Draper D. E., Torchia D. A. The RNA binding domain of ribosomal protein L11: three-dimensional structure of the RNA-bound form of the protein and its interaction with 23 S rRNA. J Mol Biol. 1997 Nov 21;274(1):101–113. doi: 10.1006/jmbi.1997.1379. [DOI] [PubMed] [Google Scholar]
  31. Hoben P., Royal N., Cheung A., Yamao F., Biemann K., Söll D. Escherichia coli glutaminyl-tRNA synthetase. II. Characterization of the glnS gene product. J Biol Chem. 1982 Oct 10;257(19):11644–11650. [PubMed] [Google Scholar]
  32. Holm L., Sander C. Protein structure comparison by alignment of distance matrices. J Mol Biol. 1993 Sep 5;233(1):123–138. doi: 10.1006/jmbi.1993.1489. [DOI] [PubMed] [Google Scholar]
  33. Huber P. W., Wool I. G. Nuclease protection analysis of ribonucleoprotein complexes: use of the cytotoxic ribonuclease alpha-sarcin to determine the binding sites for Escherichia coli ribosomal proteins L5, L18, and L25 on 5S rRNA. Proc Natl Acad Sci U S A. 1984 Jan;81(2):322–326. doi: 10.1073/pnas.81.2.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ibba M., Curnow A. W., Söll D. Aminoacyl-tRNA synthesis: divergent routes to a common goal. Trends Biochem Sci. 1997 Feb;22(2):39–42. doi: 10.1016/s0968-0004(96)20033-7. [DOI] [PubMed] [Google Scholar]
  35. Ikura M., Kay L. E., Bax A. A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry. 1990 May 15;29(19):4659–4667. doi: 10.1021/bi00471a022. [DOI] [PubMed] [Google Scholar]
  36. Jaishree T. N., Ramakrishnan V., White S. W. Solution structure of prokaryotic ribosomal protein S17 by high-resolution NMR spectroscopy. Biochemistry. 1996 Mar 5;35(9):2845–2853. doi: 10.1021/bi951062i. [DOI] [PubMed] [Google Scholar]
  37. Kay L. E., Torchia D. A., Bax A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry. 1989 Nov 14;28(23):8972–8979. doi: 10.1021/bi00449a003. [DOI] [PubMed] [Google Scholar]
  38. Kime M. J., Moore P. B. Escherichia coli ribosomal 5S RNA-protein L25 nucleoprotein complex: effects of RNA binding on the protein structure and the nature of the interaction. Biochemistry. 1984 Apr 10;23(8):1688–1695. doi: 10.1021/bi00303a017. [DOI] [PubMed] [Google Scholar]
  39. Kime M. J., Ratcliffe R. G., Moore P. B., Williams R. J. A proton NMR study of ribosomal protein L25 from Escherichia coli. Eur J Biochem. 1981 May 15;116(2):269–276. doi: 10.1111/j.1432-1033.1981.tb05329.x. [DOI] [PubMed] [Google Scholar]
  40. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  41. Krath B. N., Hove-Jensen B. Bacillus caldolyticus prs gene encoding phosphoribosyl-diphosphate synthase. Gene. 1996 Oct 17;176(1-2):73–79. doi: 10.1016/0378-1119(96)00222-3. [DOI] [PubMed] [Google Scholar]
  42. Lamour V., Quevillon S., Diriong S., N'Guyen V. C., Lipinski M., Mirande M. Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8670–8674. doi: 10.1073/pnas.91.18.8670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Liljas A., al-Karadaghi S. Structural aspects of protein synthesis. Nat Struct Biol. 1997 Oct;4(10):767–771. doi: 10.1038/nsb1097-767. [DOI] [PubMed] [Google Scholar]
  44. Ludmerer S. W., Schimmel P. Gene for yeast glutamine tRNA synthetase encodes a large amino-terminal extension and provides a strong confirmation of the signature sequence for a group of the aminoacyl-tRNA synthetases. J Biol Chem. 1987 Aug 5;262(22):10801–10806. [PubMed] [Google Scholar]
  45. Marion D., Driscoll P. C., Kay L. E., Wingfield P. T., Bax A., Gronenborn A. M., Clore G. M. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. Biochemistry. 1989 Jul 25;28(15):6150–6156. doi: 10.1021/bi00441a004. [DOI] [PubMed] [Google Scholar]
  46. Markus M. A., Hinck A. P., Huang S., Draper D. E., Torchia D. A. High resolution solution structure of ribosomal protein L11-C76, a helical protein with a flexible loop that becomes structured upon binding to RNA. Nat Struct Biol. 1997 Jan;4(1):70–77. doi: 10.1038/nsb0197-70. [DOI] [PubMed] [Google Scholar]
  47. Mosyak L., Reshetnikova L., Goldgur Y., Delarue M., Safro M. G. Structure of phenylalanyl-tRNA synthetase from Thermus thermophilus. Nat Struct Biol. 1995 Jul;2(7):537–547. doi: 10.1038/nsb0795-537. [DOI] [PubMed] [Google Scholar]
  48. Mueller F., Brimacombe R. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. II. The RNA-protein interaction data. J Mol Biol. 1997 Aug 29;271(4):545–565. doi: 10.1006/jmbi.1997.1211. [DOI] [PubMed] [Google Scholar]
  49. Mueller F., Brimacombe R. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. II. The RNA-protein interaction data. J Mol Biol. 1997 Aug 29;271(4):545–565. doi: 10.1006/jmbi.1997.1211. [DOI] [PubMed] [Google Scholar]
  50. Mumenthaler C., Güntert P., Braun W., Wüthrich K. Automated combined assignment of NOESY spectra and three-dimensional protein structure determination. J Biomol NMR. 1997 Dec;10(4):351–362. doi: 10.1023/a:1018383106236. [DOI] [PubMed] [Google Scholar]
  51. Nagai K. RNA-protein complexes. Curr Opin Struct Biol. 1996 Feb;6(1):53–61. doi: 10.1016/s0959-440x(96)80095-9. [DOI] [PubMed] [Google Scholar]
  52. Newberry V., Garrett R. A. The role of the basic N-terminal region of protein L18 in 5S RNA-23S RNA complex formation. Nucleic Acids Res. 1980 Sep 25;8(18):4131–4142. doi: 10.1093/nar/8.18.4131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Newkirk K., Feng W., Jiang W., Tejero R., Emerson S. D., Inouye M., Montelione G. T. Solution NMR structure of the major cold shock protein (CspA) from Escherichia coli: identification of a binding epitope for DNA. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5114–5118. doi: 10.1073/pnas.91.11.5114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Nilsson D., Hove-Jensen B., Arnvig K. Primary structure of the tms and prs genes of Bacillus subtilis. Mol Gen Genet. 1989 Sep;218(3):565–571. doi: 10.1007/BF00332425. [DOI] [PubMed] [Google Scholar]
  55. Ohlenschläger O., Ramachandran R., Gührs K. H., Schlott B., Brown L. R. Nuclear magnetic resonance solution structure of the plasminogen-activator protein staphylokinase. Biochemistry. 1998 Jul 28;37(30):10635–10642. doi: 10.1021/bi980673i. [DOI] [PubMed] [Google Scholar]
  56. Oldfield E. Chemical shifts and three-dimensional protein structures. J Biomol NMR. 1995 Apr;5(3):217–225. doi: 10.1007/BF00211749. [DOI] [PubMed] [Google Scholar]
  57. Onesti S., Miller A. D., Brick P. The crystal structure of the lysyl-tRNA synthetase (LysU) from Escherichia coli. Structure. 1995 Feb 15;3(2):163–176. doi: 10.1016/s0969-2126(01)00147-2. [DOI] [PubMed] [Google Scholar]
  58. Oubridge C., Ito N., Evans P. R., Teo C. H., Nagai K. Crystal structure at 1.92 A resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature. 1994 Dec 1;372(6505):432–438. doi: 10.1038/372432a0. [DOI] [PubMed] [Google Scholar]
  59. Perbandt M., Nolte A., Lorenz S., Bald R., Betzel C., Erdmann V. A. Crystal structure of domain E of Thermus flavus 5S rRNA: a helical RNA structure including a hairpin loop. FEBS Lett. 1998 Jun 12;429(2):211–215. doi: 10.1016/s0014-5793(98)00436-0. [DOI] [PubMed] [Google Scholar]
  60. Puglisi E. V., Green R., Noller H. F., Puglisi J. D. Structure of a conserved RNA component of the peptidyl transferase centre. Nat Struct Biol. 1997 Oct;4(10):775–778. doi: 10.1038/nsb1097-775. [DOI] [PubMed] [Google Scholar]
  61. Ramakrishnan V., White S. W. Ribosomal protein structures: insights into the architecture, machinery and evolution of the ribosome. Trends Biochem Sci. 1998 Jun;23(6):208–212. doi: 10.1016/s0968-0004(98)01214-6. [DOI] [PubMed] [Google Scholar]
  62. Rould M. A., Perona J. J., Steitz T. A. Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase. Nature. 1991 Jul 18;352(6332):213–218. doi: 10.1038/352213a0. [DOI] [PubMed] [Google Scholar]
  63. Schindelin H., Jiang W., Inouye M., Heinemann U. Crystal structure of CspA, the major cold shock protein of Escherichia coli. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5119–5123. doi: 10.1073/pnas.91.11.5119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Sergiev P., Dokudovskaya S., Romanova E., Topin A., Bogdanov A., Brimacombe R., Dontsova O. The environment of 5S rRNA in the ribosome: cross-links to the GTPase-associated area of 23S rRNA. Nucleic Acids Res. 1998 Jun 1;26(11):2519–2525. doi: 10.1093/nar/26.11.2519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Shen L. X., Cai Z., Tinoco I., Jr RNA structure at high resolution. FASEB J. 1995 Aug;9(11):1023–1033. doi: 10.1096/fasebj.9.11.7544309. [DOI] [PubMed] [Google Scholar]
  66. Shpanchenko O. V., Zvereva M. I., Dontsova O. A., Nierhaus K. H., Bogdanov A. A. 5S rRNA sugar-phosphate backbone protection in complexes with specific ribosomal proteins. FEBS Lett. 1996 Sep 23;394(1):71–75. doi: 10.1016/0014-5793(96)00872-1. [DOI] [PubMed] [Google Scholar]
  67. Siomi H., Dreyfuss G. RNA-binding proteins as regulators of gene expression. Curr Opin Genet Dev. 1997 Jun;7(3):345–353. doi: 10.1016/s0959-437x(97)80148-7. [DOI] [PubMed] [Google Scholar]
  68. Specht T., Wolters J., Erdmann V. A. Compilation of 5S rRNA and 5S rRNA gene sequences. Nucleic Acids Res. 1990 Apr 25;18 (Suppl):2215–2230. doi: 10.1093/nar/18.suppl.2215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Szewczak A. A., Moore P. B., Chang Y. L., Wool I. G. The conformation of the sarcin/ricin loop from 28S ribosomal RNA. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9581–9585. doi: 10.1073/pnas.90.20.9581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Szewczak A. A., Moore P. B. The sarcin/ricin loop, a modular RNA. J Mol Biol. 1995 Mar 17;247(1):81–98. doi: 10.1006/jmbi.1994.0124. [DOI] [PubMed] [Google Scholar]
  71. Tomb J. F., White O., Kerlavage A. R., Clayton R. A., Sutton G. G., Fleischmann R. D., Ketchum K. A., Klenk H. P., Gill S., Dougherty B. A. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature. 1997 Aug 7;388(6642):539–547. doi: 10.1038/41483. [DOI] [PubMed] [Google Scholar]
  72. White S. A., Nilges M., Huang A., Brünger A. T., Moore P. B. NMR analysis of helix I from the 5S RNA of Escherichia coli. Biochemistry. 1992 Feb 18;31(6):1610–1621. doi: 10.1021/bi00121a005. [DOI] [PubMed] [Google Scholar]
  73. Wimberly B., Varani G., Tinoco I., Jr The conformation of loop E of eukaryotic 5S ribosomal RNA. Biochemistry. 1993 Feb 2;32(4):1078–1087. doi: 10.1021/bi00055a013. [DOI] [PubMed] [Google Scholar]
  74. Zuiderweg E. R., Fesik S. W. Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a. Biochemistry. 1989 Mar 21;28(6):2387–2391. doi: 10.1021/bi00432a008. [DOI] [PubMed] [Google Scholar]
  75. van de Ven F. J., de Bruin S. H., Hilbers C. W. 500-MHz 1H-NMR studies of ribosomal proteins isolated from 70-S ribosomes of Escherichia coli. Eur J Biochem. 1983 Aug 15;134(3):429–438. doi: 10.1111/j.1432-1033.1983.tb07585.x. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES