Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Nov 16;17(22):6437–6448. doi: 10.1093/emboj/17.22.6437

Structural origins of gentamicin antibiotic action.

S Yoshizawa 1, D Fourmy 1, J D Puglisi 1
PMCID: PMC1170992  PMID: 9822590

Abstract

Aminoglycoside antibiotics that bind to the ribosomal A site cause misreading of the genetic code and inhibit translocation. The clinically important aminoglycoside, gentamicin C, is a mixture of three components. Binding of each gentamicin component to the ribosome and to a model RNA oligonucleotide was studied biochemically and the structure of the RNA complexed to gentamicin C1a was solved using magnetic resonance nuclear spectroscopy. Gentamicin C1a binds in the major groove of the RNA. Rings I and II of gentamicin direct specific RNA-drug interactions. Ring III of gentamicin, which distinguishes this subclass of aminoglycosides, also directs specific RNA interactions with conserved base pairs. The structure leads to a general model for specific ribosome recognition by aminoglycoside antibiotics and a possible mechanism for translational inhibition and miscoding. This study provides a structural rationale for chemical synthesis of novel aminoglycosides.

Full Text

The Full Text of this article is available as a PDF (646.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allain F. H., Varani G. Structure of the P1 helix from group I self-splicing introns. J Mol Biol. 1995 Jul 14;250(3):333–353. doi: 10.1006/jmbi.1995.0381. [DOI] [PubMed] [Google Scholar]
  2. Beauclerk A. A., Cundliffe E. Sites of action of two ribosomal RNA methylases responsible for resistance to aminoglycosides. J Mol Biol. 1987 Feb 20;193(4):661–671. doi: 10.1016/0022-2836(87)90349-4. [DOI] [PubMed] [Google Scholar]
  3. Benveniste R., Davies J. Structure-activity relationships among the aminoglycoside antibiotics: role of hydroxyl and amino groups. Antimicrob Agents Chemother. 1973 Oct;4(4):402–409. doi: 10.1128/aac.4.4.402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blanchard S. C., Fourmy D., Eason R. G., Puglisi J. D. rRNA chemical groups required for aminoglycoside binding. Biochemistry. 1998 May 26;37(21):7716–7724. doi: 10.1021/bi973125y. [DOI] [PubMed] [Google Scholar]
  5. Clore G. M., Bax A., Driscoll P. C., Wingfield P. T., Gronenborn A. M. Assignment of the side-chain 1H and 13C resonances of interleukin-1 beta using double- and triple-resonance heteronuclear three-dimensional NMR spectroscopy. Biochemistry. 1990 Sep 4;29(35):8172–8184. doi: 10.1021/bi00487a027. [DOI] [PubMed] [Google Scholar]
  6. Davies J., Davis B. D. Misreading of ribonucleic acid code words induced by aminoglycoside antibiotics. The effect of drug concentration. J Biol Chem. 1968 Jun 25;243(12):3312–3316. [PubMed] [Google Scholar]
  7. Davies J., Gorini L., Davis B. D. Misreading of RNA codewords induced by aminoglycoside antibiotics. Mol Pharmacol. 1965 Jul;1(1):93–106. [PubMed] [Google Scholar]
  8. Fourmy D., Recht M. I., Blanchard S. C., Puglisi J. D. Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science. 1996 Nov 22;274(5291):1367–1371. doi: 10.1126/science.274.5291.1367. [DOI] [PubMed] [Google Scholar]
  9. Fourmy D., Recht M. I., Puglisi J. D. Binding of neomycin-class aminoglycoside antibiotics to the A-site of 16 S rRNA. J Mol Biol. 1998 Mar 27;277(2):347–362. doi: 10.1006/jmbi.1997.1552. [DOI] [PubMed] [Google Scholar]
  10. Fourmy D., Yoshizawa S., Puglisi J. D. Paromomycin binding induces a local conformational change in the A-site of 16 S rRNA. J Mol Biol. 1998 Mar 27;277(2):333–345. doi: 10.1006/jmbi.1997.1551. [DOI] [PubMed] [Google Scholar]
  11. Karimi R., Ehrenberg M. Dissociation rate of cognate peptidyl-tRNA from the A-site of hyper-accurate and error-prone ribosomes. Eur J Biochem. 1994 Dec 1;226(2):355–360. doi: 10.1111/j.1432-1033.1994.tb20059.x. [DOI] [PubMed] [Google Scholar]
  12. Moazed D., Noller H. F. Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA. Biochimie. 1987 Aug;69(8):879–884. doi: 10.1016/0300-9084(87)90215-x. [DOI] [PubMed] [Google Scholar]
  13. Moazed D., Noller H. F. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature. 1987 Jun 4;327(6121):389–394. doi: 10.1038/327389a0. [DOI] [PubMed] [Google Scholar]
  14. Noller H. F. Ribosomal RNA and translation. Annu Rev Biochem. 1991;60:191–227. doi: 10.1146/annurev.bi.60.070191.001203. [DOI] [PubMed] [Google Scholar]
  15. Puglisi J. D., Wyatt J. R. Biochemical and NMR studies of RNA conformation with an emphasis on RNA pseudoknots. Methods Enzymol. 1995;261:323–350. doi: 10.1016/s0076-6879(95)61016-2. [DOI] [PubMed] [Google Scholar]
  16. Recht M. I., Fourmy D., Blanchard S. C., Dahlquist K. D., Puglisi J. D. RNA sequence determinants for aminoglycoside binding to an A-site rRNA model oligonucleotide. J Mol Biol. 1996 Oct 4;262(4):421–436. doi: 10.1006/jmbi.1996.0526. [DOI] [PubMed] [Google Scholar]
  17. Shaw K. J., Rather P. N., Hare R. S., Miller G. H. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev. 1993 Mar;57(1):138–163. doi: 10.1128/mr.57.1.138-163.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Simorre J. P., Zimmermann G. R., Pardi A., Farmer B. T., 2nd, Mueller L. Triple resonance HNCCCH experiments for correlating exchangeable and nonexchangeable cytidine and uridine base protons in RNA. J Biomol NMR. 1995 Dec;6(4):427–432. doi: 10.1007/BF00197641. [DOI] [PubMed] [Google Scholar]
  19. Stern S., Moazed D., Noller H. F. Structural analysis of RNA using chemical and enzymatic probing monitored by primer extension. Methods Enzymol. 1988;164:481–489. doi: 10.1016/s0076-6879(88)64064-x. [DOI] [PubMed] [Google Scholar]
  20. Thompson J., Skeggs P. A., Cundliffe E. Methylation of 16S ribosomal RNA and resistance to the aminoglycoside antibiotics gentamicin and kanamycin determined by DNA from the gentamicin-producer, Micromonospora purpurea. Mol Gen Genet. 1985;201(2):168–173. doi: 10.1007/BF00425655. [DOI] [PubMed] [Google Scholar]
  21. Weis W. I., Drickamer K. Structural basis of lectin-carbohydrate recognition. Annu Rev Biochem. 1996;65:441–473. doi: 10.1146/annurev.bi.65.070196.002301. [DOI] [PubMed] [Google Scholar]
  22. Woodcock J., Moazed D., Cannon M., Davies J., Noller H. F. Interaction of antibiotics with A- and P-site-specific bases in 16S ribosomal RNA. EMBO J. 1991 Oct;10(10):3099–3103. doi: 10.1002/j.1460-2075.1991.tb07863.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES