Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Nov 16;17(22):6608–6621. doi: 10.1093/emboj/17.22.6608

Phosphorylation-dependent and constitutive activation of Rho proteins by wild-type and oncogenic Vav-2.

K E Schuebel 1, N Movilla 1, J L Rosa 1, X R Bustelo 1
PMCID: PMC1171007  PMID: 9822605

Abstract

We show here that Vav-2, a member of the Vav family of oncoproteins, acts as a guanosine nucleotide exchange factor (GEF) for RhoG and RhoA-like GTPases in a phosphotyrosine-dependent manner. Moreover, we show that Vav-2 oncogenic activation correlates with the acquisition of phosphorylation-independent exchange activity. In vivo, wild-type Vav-2 is activated oncogenically by tyrosine kinases, an effect enhanced further by co-expression of RhoA. Likewise, the Vav-2 oncoprotein synergizes with RhoA and RhoB proteins in cellular transformation. Transient transfection assays in NIH-3T3 cells show that phosphorylated wild-type Vav-2 and the Vav-2 oncoprotein induce cytoskeletal changes resembling those observed by the activation of the RhoG pathway. In contrast, the constitutive expression of the Vav-2 oncoprotein in rodent fibroblasts leads to major alterations in cell morphology and to highly enlarged cells in which karyokinesis and cytokinesis frequently are uncoupled. These results identify a regulated GEF for the RhoA subfamily, provide a biochemical explanation for vav family oncogenicity, and establish a new signaling model in which specific Vav-like proteins couple tyrosine kinase signals with the activation of distinct subsets of the Rho/Rac family of GTPases.

Full Text

The Full Text of this article is available as a PDF (784.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boguski M. S., McCormick F. Proteins regulating Ras and its relatives. Nature. 1993 Dec 16;366(6456):643–654. doi: 10.1038/366643a0. [DOI] [PubMed] [Google Scholar]
  2. Bollag G., McCormick F. Intrinsic and GTPase-activating protein-stimulated Ras GTPase assays. Methods Enzymol. 1995;255:161–170. doi: 10.1016/s0076-6879(95)55020-8. [DOI] [PubMed] [Google Scholar]
  3. Bustelo X. R., Barbacid M. Tyrosine phosphorylation of the vav proto-oncogene product in activated B cells. Science. 1992 May 22;256(5060):1196–1199. doi: 10.1126/science.256.5060.1196. [DOI] [PubMed] [Google Scholar]
  4. Bustelo X. R., Suen K. L., Leftheris K., Meyers C. A., Barbacid M. Vav cooperates with Ras to transform rodent fibroblasts but is not a Ras GDP/GTP exchange factor. Oncogene. 1994 Aug;9(8):2405–2413. [PubMed] [Google Scholar]
  5. Bustelo X. R. The VAV family of signal transduction molecules. Crit Rev Oncog. 1996;7(1-2):65–88. doi: 10.1615/critrevoncog.v7.i1-2.50. [DOI] [PubMed] [Google Scholar]
  6. Cerione R. A., Zheng Y. The Dbl family of oncogenes. Curr Opin Cell Biol. 1996 Apr;8(2):216–222. doi: 10.1016/s0955-0674(96)80068-8. [DOI] [PubMed] [Google Scholar]
  7. Coppola J., Bryant S., Koda T., Conway D., Barbacid M. Mechanism of activation of the vav protooncogene. Cell Growth Differ. 1991 Feb;2(2):95–105. [PubMed] [Google Scholar]
  8. Crespo P., Schuebel K. E., Ostrom A. A., Gutkind J. S., Bustelo X. R. Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature. 1997 Jan 9;385(6612):169–172. doi: 10.1038/385169a0. [DOI] [PubMed] [Google Scholar]
  9. Eva A., Aaronson S. A. Isolation of a new human oncogene from a diffuse B-cell lymphoma. Nature. 1985 Jul 18;316(6025):273–275. doi: 10.1038/316273a0. [DOI] [PubMed] [Google Scholar]
  10. Gebbink M. F., Kranenburg O., Poland M., van Horck F. P., Houssa B., Moolenaar W. H. Identification of a novel, putative Rho-specific GDP/GTP exchange factor and a RhoA-binding protein: control of neuronal morphology. J Cell Biol. 1997 Jun 30;137(7):1603–1613. doi: 10.1083/jcb.137.7.1603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hall A. Rho GTPases and the actin cytoskeleton. Science. 1998 Jan 23;279(5350):509–514. doi: 10.1126/science.279.5350.509. [DOI] [PubMed] [Google Scholar]
  12. Han J., Luby-Phelps K., Das B., Shu X., Xia Y., Mosteller R. D., Krishna U. M., Falck J. R., White M. A., Broek D. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science. 1998 Jan 23;279(5350):558–560. doi: 10.1126/science.279.5350.558. [DOI] [PubMed] [Google Scholar]
  13. Hardt W. D., Chen L. M., Schuebel K. E., Bustelo X. R., Galán J. E. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell. 1998 May 29;93(5):815–826. doi: 10.1016/s0092-8674(00)81442-7. [DOI] [PubMed] [Google Scholar]
  14. Henske E. P., Short M. P., Jozwiak S., Bovey C. M., Ramlakhan S., Haines J. L., Kwiatkowski D. J. Identification of VAV2 on 9q34 and its exclusion as the tuberous sclerosis gene TSC1. Ann Hum Genet. 1995 Jan;59(Pt 1):25–37. doi: 10.1111/j.1469-1809.1995.tb01603.x. [DOI] [PubMed] [Google Scholar]
  15. Jalink K., van Corven E. J., Hengeveld T., Morii N., Narumiya S., Moolenaar W. H. Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J Cell Biol. 1994 Aug;126(3):801–810. doi: 10.1083/jcb.126.3.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Katzav S., Cleveland J. L., Heslop H. E., Pulido D. Loss of the amino-terminal helix-loop-helix domain of the vav proto-oncogene activates its transforming potential. Mol Cell Biol. 1991 Apr;11(4):1912–1920. doi: 10.1128/mcb.11.4.1912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Khosravi-Far R., Solski P. A., Clark G. J., Kinch M. S., Der C. J. Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol Cell Biol. 1995 Nov;15(11):6443–6453. doi: 10.1128/mcb.15.11.6443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lim L., Manser E., Leung T., Hall C. Regulation of phosphorylation pathways by p21 GTPases. The p21 Ras-related Rho subfamily and its role in phosphorylation signalling pathways. Eur J Biochem. 1996 Dec 1;242(2):171–185. doi: 10.1111/j.1432-1033.1996.0171r.x. [DOI] [PubMed] [Google Scholar]
  19. Quilliam L. A., Huff S. Y., Rabun K. M., Wei W., Park W., Broek D., Der C. J. Membrane-targeting potentiates guanine nucleotide exchange factor CDC25 and SOS1 activation of Ras transforming activity. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8512–8516. doi: 10.1073/pnas.91.18.8512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Roux P., Gauthier-Rouvière C., Doucet-Brutin S., Fort P. The small GTPases Cdc42Hs, Rac1 and RhoG delineate Raf-independent pathways that cooperate to transform NIH3T3 cells. Curr Biol. 1997 Sep 1;7(9):629–637. doi: 10.1016/s0960-9822(06)00289-2. [DOI] [PubMed] [Google Scholar]
  21. Schuebel K. E., Bustelo X. R., Nielsen D. A., Song B. J., Barbacid M., Goldman D., Lee I. J. Isolation and characterization of murine vav2, a member of the vav family of proto-oncogenes. Oncogene. 1996 Jul 18;13(2):363–371. [PubMed] [Google Scholar]
  22. Teramoto H., Salem P., Robbins K. C., Bustelo X. R., Gutkind J. S. Tyrosine phosphorylation of the vav proto-oncogene product links FcepsilonRI to the Rac1-JNK pathway. J Biol Chem. 1997 Apr 18;272(16):10751–10755. doi: 10.1074/jbc.272.16.10751. [DOI] [PubMed] [Google Scholar]
  23. Van Aelst L., D'Souza-Schorey C. Rho GTPases and signaling networks. Genes Dev. 1997 Sep 15;11(18):2295–2322. doi: 10.1101/gad.11.18.2295. [DOI] [PubMed] [Google Scholar]
  24. Zheng Y., Hart M. J., Cerione R. A. Guanine nucleotide exchange catalyzed by dbl oncogene product. Methods Enzymol. 1995;256:77–84. doi: 10.1016/0076-6879(95)56011-4. [DOI] [PubMed] [Google Scholar]
  25. van der Eb A. J., Graham F. L. Assay of transforming activity of tumor virus DNA. Methods Enzymol. 1980;65(1):826–839. doi: 10.1016/s0076-6879(80)65077-0. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES