Abstract
Mutations resulting in embryonic or early postnatal lethality could mask the activities of any gene in unrelated and temporally distinct developmental pathways. Targeted inactivation of the transcription factor GATA-2 gene leads to mid-gestational death as a consequence of hematopoietic failure. We show here that a 250 kbp GATA-2 yeast artificial chromosome (YAC) is expressed strongly in both the primitive and definitive hematopoietic compartments, while two smaller YACs are not. This largest YAC also rescues hematopoiesis in vitro and in vivo, thereby localizing the hematopoietic regulatory cis element(s) to between 100 and 150 kbp 5' to the GATA-2 structural gene. Introducing the YAC transgene into the GATA-2(-/-) genetic background allows the embryos to complete gestation; however, newborn rescued pups quickly succumb to lethal hydroureternephrosis, and display a complex array of genitourinary abnormalities. These findings reveal that GATA-2 plays equally vital roles in urogenital and hematopoietic development.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Antoch M. P., Song E. J., Chang A. M., Vitaterna M. H., Zhao Y., Wilsbacher L. D., Sangoram A. M., King D. P., Pinto L. H., Takahashi J. S. Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell. 1997 May 16;89(4):655–667. doi: 10.1016/s0092-8674(00)80246-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Becker D. M., Guarente L. High-efficiency transformation of yeast by electroporation. Methods Enzymol. 1991;194:182–187. doi: 10.1016/0076-6879(91)94015-5. [DOI] [PubMed] [Google Scholar]
- Bedell M. A., Brannan C. I., Evans E. P., Copeland N. G., Jenkins N. A., Donovan P. J. DNA rearrangements located over 100 kb 5' of the Steel (Sl)-coding region in Steel-panda and Steel-contrasted mice deregulate Sl expression and cause female sterility by disrupting ovarian follicle development. Genes Dev. 1995 Feb 15;9(4):455–470. doi: 10.1101/gad.9.4.455. [DOI] [PubMed] [Google Scholar]
- Birren B., Lai E. Rapid pulsed field separation of DNA molecules up to 250 kb. Nucleic Acids Res. 1994 Dec 11;22(24):5366–5370. doi: 10.1093/nar/22.24.5366. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brewer A. C., Guille M. J., Fear D. J., Partington G. A., Patient R. K. Nuclear translocation of a maternal CCAAT factor at the start of gastrulation activates Xenopus GATA-2 transcription. EMBO J. 1995 Feb 15;14(4):757–766. doi: 10.1002/j.1460-2075.1995.tb07054.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Briegel K., Lim K. C., Plank C., Beug H., Engel J. D., Zenke M. Ectopic expression of a conditional GATA-2/estrogen receptor chimera arrests erythroid differentiation in a hormone-dependent manner. Genes Dev. 1993 Jun;7(6):1097–1109. doi: 10.1101/gad.7.6.1097. [DOI] [PubMed] [Google Scholar]
- Bungert J., Davé U., Lim K. C., Lieuw K. H., Shavit J. A., Liu Q., Engel J. D. Synergistic regulation of human beta-globin gene switching by locus control region elements HS3 and HS4. Genes Dev. 1995 Dec 15;9(24):3083–3096. doi: 10.1101/gad.9.24.3083. [DOI] [PubMed] [Google Scholar]
- Capecchi M. R. Mouse genetics. YACs to the rescue. Nature. 1993 Mar 18;362(6417):205–206. doi: 10.1038/362205a0. [DOI] [PubMed] [Google Scholar]
- Dorfman D. M., Wilson D. B., Bruns G. A., Orkin S. H. Human transcription factor GATA-2. Evidence for regulation of preproendothelin-1 gene expression in endothelial cells. J Biol Chem. 1992 Jan 15;267(2):1279–1285. [PubMed] [Google Scholar]
- Emanuel S. L., Cook J. R., O'Rear J., Rothstein R., Pestka S. New vectors for manipulation and selection of functional yeast artificial chromosomes (YACs) containing human DNA inserts. Gene. 1995 Apr 3;155(2):167–174. doi: 10.1016/0378-1119(94)00852-j. [DOI] [PubMed] [Google Scholar]
- Evans T., Felsenfeld G. The erythroid-specific transcription factor Eryf1: a new finger protein. Cell. 1989 Sep 8;58(5):877–885. doi: 10.1016/0092-8674(89)90940-9. [DOI] [PubMed] [Google Scholar]
- Foley K. P., Engel J. D. Individual stage selector element mutations lead to reciprocal changes in beta- vs. epsilon-globin gene transcription: genetic confirmation of promoter competition during globin gene switching. Genes Dev. 1992 May;6(5):730–744. doi: 10.1101/gad.6.5.730. [DOI] [PubMed] [Google Scholar]
- Fujiwara Y., Browne C. P., Cunniff K., Goff S. C., Orkin S. H. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12355–12358. doi: 10.1073/pnas.93.22.12355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gove C., Walmsley M., Nijjar S., Bertwistle D., Guille M., Partington G., Bomford A., Patient R. Over-expression of GATA-6 in Xenopus embryos blocks differentiation of heart precursors. EMBO J. 1997 Jan 15;16(2):355–368. doi: 10.1093/emboj/16.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grépin C., Robitaille L., Antakly T., Nemer M. Inhibition of transcription factor GATA-4 expression blocks in vitro cardiac muscle differentiation. Mol Cell Biol. 1995 Aug;15(8):4095–4102. doi: 10.1128/mcb.15.8.4095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heard E., Avner P., Rothstein R. Creation of a deletion series of mouse YACs covering a 500 kb region around Xist. Nucleic Acids Res. 1994 May 25;22(10):1830–1837. doi: 10.1093/nar/22.10.1830. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heikinheimo M., Scandrett J. M., Wilson D. B. Localization of transcription factor GATA-4 to regions of the mouse embryo involved in cardiac development. Dev Biol. 1994 Aug;164(2):361–373. doi: 10.1006/dbio.1994.1206. [DOI] [PubMed] [Google Scholar]
- Hu M., Krause D., Greaves M., Sharkis S., Dexter M., Heyworth C., Enver T. Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev. 1997 Mar 15;11(6):774–785. doi: 10.1101/gad.11.6.774. [DOI] [PubMed] [Google Scholar]
- Jakobovits A., Moore A. L., Green L. L., Vergara G. J., Maynard-Currie C. E., Austin H. A., Klapholz S. Germ-line transmission and expression of a human-derived yeast artificial chromosome. Nature. 1993 Mar 18;362(6417):255–258. doi: 10.1038/362255a0. [DOI] [PubMed] [Google Scholar]
- Kelley C., Blumberg H., Zon L. I., Evans T. GATA-4 is a novel transcription factor expressed in endocardium of the developing heart. Development. 1993 Jul;118(3):817–827. doi: 10.1242/dev.118.3.817. [DOI] [PubMed] [Google Scholar]
- Kornhauser J. M., Leonard M. W., Yamamoto M., LaVail J. H., Mayo K. E., Engel J. D. Temporal and spatial changes in GATA transcription factor expression are coincident with development of the chicken optic tectum. Brain Res Mol Brain Res. 1994 Apr;23(1-2):100–110. doi: 10.1016/0169-328x(94)90216-x. [DOI] [PubMed] [Google Scholar]
- Laverriere A. C., MacNeill C., Mueller C., Poelmann R. E., Burch J. B., Evans T. GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J Biol Chem. 1994 Sep 16;269(37):23177–23184. [PubMed] [Google Scholar]
- Leonard M., Brice M., Engel J. D., Papayannopoulou T. Dynamics of GATA transcription factor expression during erythroid differentiation. Blood. 1993 Aug 15;82(4):1071–1079. [PubMed] [Google Scholar]
- Liu Q., Bungert J., Engel J. D. Mutation of gene-proximal regulatory elements disrupts human epsilon-, gamma-, and beta-globin expression in yeast artificial chromosome transgenic mice. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):169–174. doi: 10.1073/pnas.94.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ma G. T., Roth M. E., Groskopf J. C., Tsai F. Y., Orkin S. H., Grosveld F., Engel J. D., Linzer D. I. GATA-2 and GATA-3 regulate trophoblast-specific gene expression in vivo. Development. 1997 Feb;124(4):907–914. doi: 10.1242/dev.124.4.907. [DOI] [PubMed] [Google Scholar]
- Manson A. L., Trezise A. E., MacVinish L. J., Kasschau K. D., Birchall N., Episkopou V., Vassaux G., Evans M. J., Colledge W. H., Cuthbert A. W. Complementation of null CF mice with a human CFTR YAC transgene. EMBO J. 1997 Jul 16;16(14):4238–4249. doi: 10.1093/emboj/16.14.4238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDevitt M. A., Shivdasani R. A., Fujiwara Y., Yang H., Orkin S. H. A "knockdown" mutation created by cis-element gene targeting reveals the dependence of erythroid cell maturation on the level of transcription factor GATA-1. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6781–6785. doi: 10.1073/pnas.94.13.6781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Medvinsky A., Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell. 1996 Sep 20;86(6):897–906. doi: 10.1016/s0092-8674(00)80165-8. [DOI] [PubMed] [Google Scholar]
- Miles C., Sanchez M. J., Sinclair A., Dzierzak E. Expression of the Ly-6E.1 (Sca-1) transgene in adult hematopoietic stem cells and the developing mouse embryo. Development. 1997 Jan;124(2):537–547. doi: 10.1242/dev.124.2.537. [DOI] [PubMed] [Google Scholar]
- Minegishi N., Ohta J., Suwabe N., Nakauchi H., Ishihara H., Hayashi N., Yamamoto M. Alternative promoters regulate transcription of the mouse GATA-2 gene. J Biol Chem. 1998 Feb 6;273(6):3625–3634. doi: 10.1074/jbc.273.6.3625. [DOI] [PubMed] [Google Scholar]
- Molkentin J. D., Lin Q., Duncan S. A., Olson E. N. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 1997 Apr 15;11(8):1061–1072. doi: 10.1101/gad.11.8.1061. [DOI] [PubMed] [Google Scholar]
- Montoliu L., Umland T., Schütz G. A locus control region at -12 kb of the tyrosinase gene. EMBO J. 1996 Nov 15;15(22):6026–6034. [PMC free article] [PubMed] [Google Scholar]
- Müller A. M., Medvinsky A., Strouboulis J., Grosveld F., Dzierzak E. Development of hematopoietic stem cell activity in the mouse embryo. Immunity. 1994 Jul;1(4):291–301. doi: 10.1016/1074-7613(94)90081-7. [DOI] [PubMed] [Google Scholar]
- Nagai T., Harigae H., Ishihara H., Motohashi H., Minegishi N., Tsuchiya S., Hayashi N., Gu L., Andres B., Engel J. D. Transcription factor GATA-2 is expressed in erythroid, early myeloid, and CD34+ human leukemia-derived cell lines. Blood. 1994 Aug 15;84(4):1074–1084. [PubMed] [Google Scholar]
- Ng Y. K., George K. M., Engel J. D., Linzer D. I. GATA factor activity is required for the trophoblast-specific transcriptional regulation of the mouse placental lactogen I gene. Development. 1994 Nov;120(11):3257–3266. doi: 10.1242/dev.120.11.3257. [DOI] [PubMed] [Google Scholar]
- Pandolfi P. P., Roth M. E., Karis A., Leonard M. W., Dzierzak E., Grosveld F. G., Engel J. D., Lindenbaum M. H. Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet. 1995 Sep;11(1):40–44. doi: 10.1038/ng0995-40. [DOI] [PubMed] [Google Scholar]
- Schedl A., Larin Z., Montoliu L., Thies E., Kelsey G., Lehrach H., Schütz G. A method for the generation of YAC transgenic mice by pronuclear microinjection. Nucleic Acids Res. 1993 Oct 11;21(20):4783–4787. doi: 10.1093/nar/21.20.4783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smithies O., Gregg R. G., Boggs S. S., Koralewski M. A., Kucherlapati R. S. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature. 1985 Sep 19;317(6034):230–234. doi: 10.1038/317230a0. [DOI] [PubMed] [Google Scholar]
- Strauss W. M., Dausman J., Beard C., Johnson C., Lawrence J. B., Jaenisch R. Germ line transmission of a yeast artificial chromosome spanning the murine alpha 1(I) collagen locus. Science. 1993 Mar 26;259(5103):1904–1907. doi: 10.1126/science.8096090. [DOI] [PubMed] [Google Scholar]
- Takahashi S., Onodera K., Motohashi H., Suwabe N., Hayashi N., Yanai N., Nabesima Y., Yamamoto M. Arrest in primitive erythroid cell development caused by promoter-specific disruption of the GATA-1 gene. J Biol Chem. 1997 May 9;272(19):12611–12615. doi: 10.1074/jbc.272.19.12611. [DOI] [PubMed] [Google Scholar]
- Thomas K. R., Capecchi M. R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 1987 Nov 6;51(3):503–512. doi: 10.1016/0092-8674(87)90646-5. [DOI] [PubMed] [Google Scholar]
- Ting C. N., Olson M. C., Barton K. P., Leiden J. M. Transcription factor GATA-3 is required for development of the T-cell lineage. Nature. 1996 Dec 5;384(6608):474–478. doi: 10.1038/384474a0. [DOI] [PubMed] [Google Scholar]
- Tsai F. Y., Keller G., Kuo F. C., Weiss M., Chen J., Rosenblatt M., Alt F. W., Orkin S. H. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature. 1994 Sep 15;371(6494):221–226. doi: 10.1038/371221a0. [DOI] [PubMed] [Google Scholar]
- Tsai S. F., Martin D. I., Zon L. I., D'Andrea A. D., Wong G. G., Orkin S. H. Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature. 1989 Jun 8;339(6224):446–451. doi: 10.1038/339446a0. [DOI] [PubMed] [Google Scholar]
- Walmsley M. E., Guille M. J., Bertwistle D., Smith J. C., Pizzey J. A., Patient R. K. Negative control of Xenopus GATA-2 by activin and noggin with eventual expression in precursors of the ventral blood islands. Development. 1994 Sep;120(9):2519–2529. doi: 10.1242/dev.120.9.2519. [DOI] [PubMed] [Google Scholar]
- Warot X., Fromental-Ramain C., Fraulob V., Chambon P., Dollé P. Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development. 1997 Dec;124(23):4781–4791. doi: 10.1242/dev.124.23.4781. [DOI] [PubMed] [Google Scholar]
- Winston F., Chumley F., Fink G. R. Eviction and transplacement of mutant genes in yeast. Methods Enzymol. 1983;101:211–228. doi: 10.1016/0076-6879(83)01016-2. [DOI] [PubMed] [Google Scholar]
- Yamamoto M., Ko L. J., Leonard M. W., Beug H., Orkin S. H., Engel J. D. Activity and tissue-specific expression of the transcription factor NF-E1 multigene family. Genes Dev. 1990 Oct;4(10):1650–1662. doi: 10.1101/gad.4.10.1650. [DOI] [PubMed] [Google Scholar]
- Zheng W., Flavell R. A. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell. 1997 May 16;89(4):587–596. doi: 10.1016/s0092-8674(00)80240-8. [DOI] [PubMed] [Google Scholar]
