Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Dec 1;17(23):6790–6798. doi: 10.1093/emboj/17.23.6790

Otx1 and Otx2 in the development and evolution of the mammalian brain.

A Simeone 1
PMCID: PMC1171026  PMID: 9843484

Abstract

In the last decade, a number of genes related to the induction, specification and regionalization of the brain were isolated and their functional properties currently are being dissected. Among these, Otx1 and Otx2 play a pivotal role in several processes of brain morphogenesis. Findings from several groups now confirm the importance of Otx2 in the early specification of neuroectoderm destined to become fore-midbrain, the existence of an Otx gene dosage-dependent mechanism in patterning the developing brain, and the involvement of Otx1 in corticogenesis. Some of these properties appear particularly fascinating when considered in evolutionary terms and highlight the central role of Otx genes in the establishment of the genetic program defining the complexity of a vertebrate brain. This review deals with the major aspects related to the roles played by Otx1 and Otx2 in the development and evolution of the mammalian brain.

Full Text

The Full Text of this article is available as a PDF (280.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acampora D., Avantaggiato V., Tuorto F., Barone P., Reichert H., Finkelstein R., Simeone A. Murine Otx1 and Drosophila otd genes share conserved genetic functions required in invertebrate and vertebrate brain development. Development. 1998 May;125(9):1691–1702. doi: 10.1242/dev.125.9.1691. [DOI] [PubMed] [Google Scholar]
  2. Acampora D., Avantaggiato V., Tuorto F., Simeone A. Genetic control of brain morphogenesis through Otx gene dosage requirement. Development. 1997 Sep;124(18):3639–3650. doi: 10.1242/dev.124.18.3639. [DOI] [PubMed] [Google Scholar]
  3. Acampora D., Mazan S., Avantaggiato V., Barone P., Tuorto F., Lallemand Y., Brûlet P., Simeone A. Epilepsy and brain abnormalities in mice lacking the Otx1 gene. Nat Genet. 1996 Oct;14(2):218–222. doi: 10.1038/ng1096-218. [DOI] [PubMed] [Google Scholar]
  4. Acampora D., Mazan S., Lallemand Y., Avantaggiato V., Maury M., Simeone A., Brûlet P. Forebrain and midbrain regions are deleted in Otx2-/- mutants due to a defective anterior neuroectoderm specification during gastrulation. Development. 1995 Oct;121(10):3279–3290. doi: 10.1242/dev.121.10.3279. [DOI] [PubMed] [Google Scholar]
  5. Ang S. L., Conlon R. A., Jin O., Rossant J. Positive and negative signals from mesoderm regulate the expression of mouse Otx2 in ectoderm explants. Development. 1994 Oct;120(10):2979–2989. doi: 10.1242/dev.120.10.2979. [DOI] [PubMed] [Google Scholar]
  6. Ang S. L., Jin O., Rhinn M., Daigle N., Stevenson L., Rossant J. A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development. 1996 Jan;122(1):243–252. doi: 10.1242/dev.122.1.243. [DOI] [PubMed] [Google Scholar]
  7. Ang S. L. The brain organization. Nature. 1996 Mar 7;380(6569):25–27. doi: 10.1038/380025a0. [DOI] [PubMed] [Google Scholar]
  8. Avantaggiato V., Acampora D., Tuorto F., Simeone A. Retinoic acid induces stage-specific repatterning of the rostral central nervous system. Dev Biol. 1996 May 1;175(2):347–357. doi: 10.1006/dbio.1996.0120. [DOI] [PubMed] [Google Scholar]
  9. Bally-Cuif L., Gulisano M., Broccoli V., Boncinelli E. c-otx2 is expressed in two different phases of gastrulation and is sensitive to retinoic acid treatment in chick embryo. Mech Dev. 1995 Jan;49(1-2):49–63. doi: 10.1016/0925-4773(94)00301-3. [DOI] [PubMed] [Google Scholar]
  10. Bally-Cuif L., Wassef M. Determination events in the nervous system of the vertebrate embryo. Curr Opin Genet Dev. 1995 Aug;5(4):450–458. doi: 10.1016/0959-437x(95)90048-l. [DOI] [PubMed] [Google Scholar]
  11. Bear M. F. Mechanism for a sliding synaptic modification threshold. Neuron. 1995 Jul;15(1):1–4. doi: 10.1016/0896-6273(95)90056-x. [DOI] [PubMed] [Google Scholar]
  12. Beddington R. S. Induction of a second neural axis by the mouse node. Development. 1994 Mar;120(3):613–620. doi: 10.1242/dev.120.3.613. [DOI] [PubMed] [Google Scholar]
  13. Belo J. A., Bouwmeester T., Leyns L., Kertesz N., Gallo M., Follettie M., De Robertis E. M. Cerberus-like is a secreted factor with neutralizing activity expressed in the anterior primitive endoderm of the mouse gastrula. Mech Dev. 1997 Nov;68(1-2):45–57. doi: 10.1016/s0925-4773(97)00125-1. [DOI] [PubMed] [Google Scholar]
  14. Blitz I. L., Cho K. W. Anterior neurectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle. Development. 1995 Apr;121(4):993–1004. doi: 10.1242/dev.121.4.993. [DOI] [PubMed] [Google Scholar]
  15. Bouwmeester T., Kim S., Sasai Y., Lu B., De Robertis E. M. Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer. Nature. 1996 Aug 15;382(6592):595–601. doi: 10.1038/382595a0. [DOI] [PubMed] [Google Scholar]
  16. Bouwmeester T., Leyns L. Vertebrate head induction by anterior primitive endoderm. Bioessays. 1997 Oct;19(10):855–863. doi: 10.1002/bies.950191005. [DOI] [PubMed] [Google Scholar]
  17. Callaerts P., Halder G., Gehring W. J. PAX-6 in development and evolution. Annu Rev Neurosci. 1997;20:483–532. doi: 10.1146/annurev.neuro.20.1.483. [DOI] [PubMed] [Google Scholar]
  18. Chen S., Wang Q. L., Nie Z., Sun H., Lennon G., Copeland N. G., Gilbert D. J., Jenkins N. A., Zack D. J. Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron. 1997 Nov;19(5):1017–1030. doi: 10.1016/s0896-6273(00)80394-3. [DOI] [PubMed] [Google Scholar]
  19. Chiang C., Litingtung Y., Lee E., Young K. E., Corden J. L., Westphal H., Beachy P. A. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature. 1996 Oct 3;383(6599):407–413. doi: 10.1038/383407a0. [DOI] [PubMed] [Google Scholar]
  20. Cohen S. M., Jürgens G. Mediation of Drosophila head development by gap-like segmentation genes. Nature. 1990 Aug 2;346(6283):482–485. doi: 10.1038/346482a0. [DOI] [PubMed] [Google Scholar]
  21. Cohen S., Jürgens G. Drosophila headlines. Trends Genet. 1991 Aug;7(8):267–272. doi: 10.1016/0168-9525(91)90327-M. [DOI] [PubMed] [Google Scholar]
  22. Conlon R. A., Rossant J. Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox-2 genes in vivo. Development. 1992 Oct;116(2):357–368. doi: 10.1242/dev.116.2.357. [DOI] [PubMed] [Google Scholar]
  23. Crossley P. H., Martin G. R. The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development. 1995 Feb;121(2):439–451. doi: 10.1242/dev.121.2.439. [DOI] [PubMed] [Google Scholar]
  24. Crossley P. H., Martinez S., Martin G. R. Midbrain development induced by FGF8 in the chick embryo. Nature. 1996 Mar 7;380(6569):66–68. doi: 10.1038/380066a0. [DOI] [PubMed] [Google Scholar]
  25. Dattani M. T., Martinez-Barbera J. P., Thomas P. Q., Brickman J. M., Gupta R., Mårtensson I. L., Toresson H., Fox M., Wales J. K., Hindmarsh P. C. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat Genet. 1998 Jun;19(2):125–133. doi: 10.1038/477. [DOI] [PubMed] [Google Scholar]
  26. Doniach T. Planar and vertical induction of anteroposterior pattern during the development of the amphibian central nervous system. J Neurobiol. 1993 Oct;24(10):1256–1275. doi: 10.1002/neu.480241003. [DOI] [PubMed] [Google Scholar]
  27. Duboule D., Dollé P. The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J. 1989 May;8(5):1497–1505. doi: 10.1002/j.1460-2075.1989.tb03534.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Echelard Y., Epstein D. J., St-Jacques B., Shen L., Mohler J., McMahon J. A., McMahon A. P. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell. 1993 Dec 31;75(7):1417–1430. doi: 10.1016/0092-8674(93)90627-3. [DOI] [PubMed] [Google Scholar]
  29. Ericson J., Morton S., Kawakami A., Roelink H., Jessell T. M. Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell. 1996 Nov 15;87(4):661–673. doi: 10.1016/s0092-8674(00)81386-0. [DOI] [PubMed] [Google Scholar]
  30. Figdor M. C., Stern C. D. Segmental organization of embryonic diencephalon. Nature. 1993 Jun 17;363(6430):630–634. doi: 10.1038/363630a0. [DOI] [PubMed] [Google Scholar]
  31. Finkelstein R., Boncinelli E. From fly head to mammalian forebrain: the story of otd and Otx. Trends Genet. 1994 Sep;10(9):310–315. doi: 10.1016/0168-9525(94)90033-7. [DOI] [PubMed] [Google Scholar]
  32. Finkelstein R., Perrimon N. The orthodenticle gene is regulated by bicoid and torso and specifies Drosophila head development. Nature. 1990 Aug 2;346(6283):485–488. doi: 10.1038/346485a0. [DOI] [PubMed] [Google Scholar]
  33. Finkelstein R., Smouse D., Capaci T. M., Spradling A. C., Perrimon N. The orthodenticle gene encodes a novel homeo domain protein involved in the development of the Drosophila nervous system and ocellar visual structures. Genes Dev. 1990 Sep;4(9):1516–1527. doi: 10.1101/gad.4.9.1516. [DOI] [PubMed] [Google Scholar]
  34. Foley A. C., Storey K. G., Stern C. D. The prechordal region lacks neural inducing ability, but can confer anterior character to more posterior neuroepithelium. Development. 1997 Aug;124(15):2983–2996. doi: 10.1242/dev.124.15.2983. [DOI] [PubMed] [Google Scholar]
  35. Frantz G. D., Weimann J. M., Levin M. E., McConnell S. K. Otx1 and Otx2 define layers and regions in developing cerebral cortex and cerebellum. J Neurosci. 1994 Oct;14(10):5725–5740. doi: 10.1523/JNEUROSCI.14-10-05725.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Freund C. L., Gregory-Evans C. Y., Furukawa T., Papaioannou M., Looser J., Ploder L., Bellingham J., Ng D., Herbrick J. A., Duncan A. Cone-rod dystrophy due to mutations in a novel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the photoreceptor. Cell. 1997 Nov 14;91(4):543–553. doi: 10.1016/s0092-8674(00)80440-7. [DOI] [PubMed] [Google Scholar]
  37. Gammill L. S., Sive H. Identification of otx2 target genes and restrictions in ectodermal competence during Xenopus cement gland formation. Development. 1997 Jan;124(2):471–481. doi: 10.1242/dev.124.2.471. [DOI] [PubMed] [Google Scholar]
  38. Gurdon J. B. Embryonic induction--molecular prospects. Development. 1987 Mar;99(3):285–306. doi: 10.1242/dev.99.3.285. [DOI] [PubMed] [Google Scholar]
  39. Holland P., Ingham P., Krauss S. Development and evolution. Mice and flies head to head. Nature. 1992 Aug 20;358(6388):627–628. doi: 10.1038/358627a0. [DOI] [PubMed] [Google Scholar]
  40. Houart C., Westerfield M., Wilson S. W. A small population of anterior cells patterns the forebrain during zebrafish gastrulation. Nature. 1998 Feb 19;391(6669):788–792. doi: 10.1038/35853. [DOI] [PubMed] [Google Scholar]
  41. Izpisúa-Belmonte J. C., De Robertis E. M., Storey K. G., Stern C. D. The homeobox gene goosecoid and the origin of organizer cells in the early chick blastoderm. Cell. 1993 Aug 27;74(4):645–659. doi: 10.1016/0092-8674(93)90512-o. [DOI] [PubMed] [Google Scholar]
  42. Joyner A. L. Engrailed, Wnt and Pax genes regulate midbrain--hindbrain development. Trends Genet. 1996 Jan;12(1):15–20. doi: 10.1016/0168-9525(96)81383-7. [DOI] [PubMed] [Google Scholar]
  43. Krumlauf R. Hox genes in vertebrate development. Cell. 1994 Jul 29;78(2):191–201. doi: 10.1016/0092-8674(94)90290-9. [DOI] [PubMed] [Google Scholar]
  44. Lee S. M., Danielian P. S., Fritzsch B., McMahon A. P. Evidence that FGF8 signalling from the midbrain-hindbrain junction regulates growth and polarity in the developing midbrain. Development. 1997 Mar;124(5):959–969. doi: 10.1242/dev.124.5.959. [DOI] [PubMed] [Google Scholar]
  45. Lemaire P., Kodjabachian L. The vertebrate organizer: structure and molecules. Trends Genet. 1996 Dec;12(12):525–531. doi: 10.1016/s0168-9525(97)81401-1. [DOI] [PubMed] [Google Scholar]
  46. Leuzinger S., Hirth F., Gerlich D., Acampora D., Simeone A., Gehring W. J., Finkelstein R., Furukubo-Tokunaga K., Reichert H. Equivalence of the fly orthodenticle gene and the human OTX genes in embryonic brain development of Drosophila. Development. 1998 May;125(9):1703–1710. doi: 10.1242/dev.125.9.1703. [DOI] [PubMed] [Google Scholar]
  47. Lewis E. B. A gene complex controlling segmentation in Drosophila. Nature. 1978 Dec 7;276(5688):565–570. doi: 10.1038/276565a0. [DOI] [PubMed] [Google Scholar]
  48. Marin F., Puelles L. Patterning of the embryonic avian midbrain after experimental inversions: a polarizing activity from the isthmus. Dev Biol. 1994 May;163(1):19–37. doi: 10.1006/dbio.1994.1120. [DOI] [PubMed] [Google Scholar]
  49. Marshall H., Nonchev S., Sham M. H., Muchamore I., Lumsden A., Krumlauf R. Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into a 4/5 identity. Nature. 1992 Dec 24;360(6406):737–741. doi: 10.1038/360737a0. [DOI] [PubMed] [Google Scholar]
  50. Martinez S., Wassef M., Alvarado-Mallart R. M. Induction of a mesencephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene en. Neuron. 1991 Jun;6(6):971–981. doi: 10.1016/0896-6273(91)90237-t. [DOI] [PubMed] [Google Scholar]
  51. Martí E., Bumcrot D. A., Takada R., McMahon A. P. Requirement of 19K form of Sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature. 1995 May 25;375(6529):322–325. doi: 10.1038/375322a0. [DOI] [PubMed] [Google Scholar]
  52. Matsuo I., Kuratani S., Kimura C., Takeda N., Aizawa S. Mouse Otx2 functions in the formation and patterning of rostral head. Genes Dev. 1995 Nov 1;9(21):2646–2658. doi: 10.1101/gad.9.21.2646. [DOI] [PubMed] [Google Scholar]
  53. McConnell S. K. Constructing the cerebral cortex: neurogenesis and fate determination. Neuron. 1995 Oct;15(4):761–768. doi: 10.1016/0896-6273(95)90168-x. [DOI] [PubMed] [Google Scholar]
  54. Meencke H. J., Janz D. Neuropathological findings in primary generalized epilepsy: a study of eight cases. Epilepsia. 1984 Feb;25(1):8–21. doi: 10.1111/j.1528-1157.1984.tb04149.x. [DOI] [PubMed] [Google Scholar]
  55. Meinhardt H. Cell determination boundaries as organizing regions for secondary embryonic fields. Dev Biol. 1983 Apr;96(2):375–385. doi: 10.1016/0012-1606(83)90175-6. [DOI] [PubMed] [Google Scholar]
  56. Mercier P., Simeone A., Cotelli F., Boncinelli E. Expression pattern of two otx genes suggests a role in specifying anterior body structures in zebrafish. Int J Dev Biol. 1995 Aug;39(4):559–573. [PubMed] [Google Scholar]
  57. Meyers E. N., Lewandoski M., Martin G. R. An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat Genet. 1998 Feb;18(2):136–141. doi: 10.1038/ng0298-136. [DOI] [PubMed] [Google Scholar]
  58. Millet S., Bloch-Gallego E., Simeone A., Alvarado-Mallart R. M. The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridisation and chick/quail homotopic grafts. Development. 1996 Dec;122(12):3785–3797. doi: 10.1242/dev.122.12.3785. [DOI] [PubMed] [Google Scholar]
  59. Nagao T., Leuzinger S., Acampora D., Simeone A., Finkelstein R., Reichert H., Furukubo-Tokunaga K. Developmental rescue of Drosophila cephalic defects by the human Otx genes. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3737–3742. doi: 10.1073/pnas.95.7.3737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Noebels J. L. Targeting epilepsy genes. Neuron. 1996 Feb;16(2):241–244. doi: 10.1016/s0896-6273(00)80042-2. [DOI] [PubMed] [Google Scholar]
  61. Pannese M., Polo C., Andreazzoli M., Vignali R., Kablar B., Barsacchi G., Boncinelli E. The Xenopus homologue of Otx2 is a maternal homeobox gene that demarcates and specifies anterior body regions. Development. 1995 Mar;121(3):707–720. doi: 10.1242/dev.121.3.707. [DOI] [PubMed] [Google Scholar]
  62. Raymond A. A., Fish D. R., Sisodiya S. M., Alsanjari N., Stevens J. M., Shorvon S. D. Abnormalities of gyration, heterotopias, tuberous sclerosis, focal cortical dysplasia, microdysgenesis, dysembryoplastic neuroepithelial tumour and dysgenesis of the archicortex in epilepsy. Clinical, EEG and neuroimaging features in 100 adult patients. Brain. 1995 Jun;118(Pt 3):629–660. doi: 10.1093/brain/118.3.629. [DOI] [PubMed] [Google Scholar]
  63. Reichert H., Boyan G. Building a brain: developmental insights in insects. Trends Neurosci. 1997 Jun;20(6):258–264. doi: 10.1016/s0166-2236(96)01034-x. [DOI] [PubMed] [Google Scholar]
  64. Rhinn M., Dierich A., Shawlot W., Behringer R. R., Le Meur M., Ang S. L. Sequential roles for Otx2 in visceral endoderm and neuroectoderm for forebrain and midbrain induction and specification. Development. 1998 Mar;125(5):845–856. doi: 10.1242/dev.125.5.845. [DOI] [PubMed] [Google Scholar]
  65. Roelink H., Porter J. A., Chiang C., Tanabe Y., Chang D. T., Beachy P. A., Jessell T. M. Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell. 1995 May 5;81(3):445–455. doi: 10.1016/0092-8674(95)90397-6. [DOI] [PubMed] [Google Scholar]
  66. Royet J., Finkelstein R. Pattern formation in Drosophila head development: the role of the orthodenticle homeobox gene. Development. 1995 Nov;121(11):3561–3572. doi: 10.1242/dev.121.11.3561. [DOI] [PubMed] [Google Scholar]
  67. Rubenstein J. L., Martinez S., Shimamura K., Puelles L. The embryonic vertebrate forebrain: the prosomeric model. Science. 1994 Oct 28;266(5185):578–580. doi: 10.1126/science.7939711. [DOI] [PubMed] [Google Scholar]
  68. Rubenstein J. L., Shimamura K., Martinez S., Puelles L. Regionalization of the prosencephalic neural plate. Annu Rev Neurosci. 1998;21:445–477. doi: 10.1146/annurev.neuro.21.1.445. [DOI] [PubMed] [Google Scholar]
  69. Ruiz i Altaba A. Induction and axial patterning of the neural plate: planar and vertical signals. J Neurobiol. 1993 Oct;24(10):1276–1304. doi: 10.1002/neu.480241004. [DOI] [PubMed] [Google Scholar]
  70. Ruiz i Altaba A. Neural patterning. Deconstructing the organizer. Nature. 1998 Feb 19;391(6669):748–749. doi: 10.1038/35761. [DOI] [PubMed] [Google Scholar]
  71. Ruiz i Altaba A. Pattern formation in the vertebrate neural plate. Trends Neurosci. 1994 Jun;17(6):233–243. doi: 10.1016/0166-2236(94)90006-x. [DOI] [PubMed] [Google Scholar]
  72. Shawlot W., Behringer R. R. Requirement for Lim1 in head-organizer function. Nature. 1995 Mar 30;374(6521):425–430. doi: 10.1038/374425a0. [DOI] [PubMed] [Google Scholar]
  73. Simeone A., Acampora D., Gulisano M., Stornaiuolo A., Boncinelli E. Nested expression domains of four homeobox genes in developing rostral brain. Nature. 1992 Aug 20;358(6388):687–690. doi: 10.1038/358687a0. [DOI] [PubMed] [Google Scholar]
  74. Simeone A., Acampora D., Mallamaci A., Stornaiuolo A., D'Apice M. R., Nigro V., Boncinelli E. A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J. 1993 Jul;12(7):2735–2747. doi: 10.1002/j.1460-2075.1993.tb05935.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Simeone A., Avantaggiato V., Moroni M. C., Mavilio F., Arra C., Cotelli F., Nigro V., Acampora D. Retinoic acid induces stage-specific antero-posterior transformation of rostral central nervous system. Mech Dev. 1995 May;51(1):83–98. doi: 10.1016/0925-4773(95)96241-m. [DOI] [PubMed] [Google Scholar]
  76. Simeone A., Gulisano M., Acampora D., Stornaiuolo A., Rambaldi M., Boncinelli E. Two vertebrate homeobox genes related to the Drosophila empty spiracles gene are expressed in the embryonic cerebral cortex. EMBO J. 1992 Jul;11(7):2541–2550. doi: 10.1002/j.1460-2075.1992.tb05319.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Sive H. L., Cheng P. F. Retinoic acid perturbs the expression of Xhox.lab genes and alters mesodermal determination in Xenopus laevis. Genes Dev. 1991 Aug;5(8):1321–1332. doi: 10.1101/gad.5.8.1321. [DOI] [PubMed] [Google Scholar]
  78. Stern C. D. Mesoderm induction and development of the embryonic axis in amniotes. Trends Genet. 1992 May;8(5):158–163. doi: 10.1016/0168-9525(92)90217-r. [DOI] [PubMed] [Google Scholar]
  79. Suda Y., Matsuo I., Aizawa S. Cooperation between Otx1 and Otx2 genes in developmental patterning of rostral brain. Mech Dev. 1997 Dec;69(1-2):125–141. doi: 10.1016/s0925-4773(97)00161-5. [DOI] [PubMed] [Google Scholar]
  80. Suda Y., Matsuo I., Kuratani S., Aizawa S. Otx1 function overlaps with Otx2 in development of mouse forebrain and midbrain. Genes Cells. 1996 Nov;1(11):1031–1044. doi: 10.1046/j.1365-2443.1996.900288.x. [DOI] [PubMed] [Google Scholar]
  81. Tam P. P., Behringer R. R. Mouse gastrulation: the formation of a mammalian body plan. Mech Dev. 1997 Nov;68(1-2):3–25. doi: 10.1016/s0925-4773(97)00123-8. [DOI] [PubMed] [Google Scholar]
  82. Thomas P. Q., Brown A., Beddington R. S. Hex: a homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development. 1998 Jan;125(1):85–94. doi: 10.1242/dev.125.1.85. [DOI] [PubMed] [Google Scholar]
  83. Thomas P., Beddington R. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr Biol. 1996 Nov 1;6(11):1487–1496. doi: 10.1016/s0960-9822(96)00753-1. [DOI] [PubMed] [Google Scholar]
  84. Thor S. The genetics of brain development: conserved programs in flies and mice. Neuron. 1995 Nov;15(5):975–977. doi: 10.1016/0896-6273(95)90084-5. [DOI] [PubMed] [Google Scholar]
  85. Ueki T., Kuratani S., Hirano S., Aizawa S. Otx cognates in a lamprey, Lampetra japonica. Dev Genes Evol. 1998 Jun;208(4):223–228. doi: 10.1007/s004270050176. [DOI] [PubMed] [Google Scholar]
  86. Varlet I., Collignon J., Robertson E. J. nodal expression in the primitive endoderm is required for specification of the anterior axis during mouse gastrulation. Development. 1997 Mar;124(5):1033–1044. doi: 10.1242/dev.124.5.1033. [DOI] [PubMed] [Google Scholar]
  87. Wada S., Katsuyama Y., Sato Y., Itoh C., Saiga H. Hroth an orthodenticle-related homeobox gene of the ascidian, Halocynthia roretzi: its expression and putative roles in the axis formation during embryogenesis. Mech Dev. 1996 Nov;60(1):59–71. doi: 10.1016/s0925-4773(96)00600-4. [DOI] [PubMed] [Google Scholar]
  88. Wassarman K. M., Lewandoski M., Campbell K., Joyner A. L., Rubenstein J. L., Martinez S., Martin G. R. Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development. 1997 Aug;124(15):2923–2934. doi: 10.1242/dev.124.15.2923. [DOI] [PubMed] [Google Scholar]
  89. Williams N. A., Holland P. W. Gene and domain duplication in the chordate Otx gene family: insights from amphioxus Otx. Mol Biol Evol. 1998 May;15(5):600–607. doi: 10.1093/oxfordjournals.molbev.a025961. [DOI] [PubMed] [Google Scholar]
  90. Younossi-Hartenstein A., Green P., Liaw G. J., Rudolph K., Lengyel J., Hartenstein V. Control of early neurogenesis of the Drosophila brain by the head gap genes tll, otd, ems, and btd. Dev Biol. 1997 Feb 15;182(2):270–283. doi: 10.1006/dbio.1996.8475. [DOI] [PubMed] [Google Scholar]
  91. van der Hoeven F., Zákány J., Duboule D. Gene transpositions in the HoxD complex reveal a hierarchy of regulatory controls. Cell. 1996 Jun 28;85(7):1025–1035. doi: 10.1016/s0092-8674(00)81303-3. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES