Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Dec 1;17(23):6846–6853. doi: 10.1093/emboj/17.23.6846

The relative expression amounts of apterous and its co-factor dLdb/Chip are critical for dorso-ventral compartmentalization in the Drosophila wing.

P Fernández-Fúnez 1, C H Lu 1, D E Rincón-Limas 1, A García-Bellido 1, J Botas 1
PMCID: PMC1171032  PMID: 9843490

Abstract

Dorso-ventral axis formation in the Drosophila wing requires the localized accumulation of the Apterous LIM/homeodomain protein (Ap) in dorsal cells. Here we report that dLdb/Chip encodes a LIM-binding cofactor that controls Ap activity. Both lack and excess of dLdb/Chip function cause the same phenotype as apterous (ap) lack of function; i.e. dorsal to ventral transformations, generation of new wing margins, and wing outgrowths. These results indicate that the normal function of Ap in dorso-ventral compartmentalization requires the correct amount of the DLDB/CHIP co-factor, and suggest that the Ap and DLDB/CHIP proteins form a multimeric functional complex. In support of this model, we show that the dLdb/Chip excess-of-function phenotypes can be rescued by ap overexpression.

Full Text

The Full Text of this article is available as a PDF (626.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agulnick A. D., Taira M., Breen J. J., Tanaka T., Dawid I. B., Westphal H. Interactions of the LIM-domain-binding factor Ldb1 with LIM homeodomain proteins. Nature. 1996 Nov 21;384(6606):270–272. doi: 10.1038/384270a0. [DOI] [PubMed] [Google Scholar]
  2. Bach I., Carrière C., Ostendorff H. P., Andersen B., Rosenfeld M. G. A family of LIM domain-associated cofactors confer transcriptional synergism between LIM and Otx homeodomain proteins. Genes Dev. 1997 Jun 1;11(11):1370–1380. doi: 10.1101/gad.11.11.1370. [DOI] [PubMed] [Google Scholar]
  3. Blair S. S., Brower D. L., Thomas J. B., Zavortink M. The role of apterous in the control of dorsoventral compartmentalization and PS integrin gene expression in the developing wing of Drosophila. Development. 1994 Jul;120(7):1805–1815. doi: 10.1242/dev.120.7.1805. [DOI] [PubMed] [Google Scholar]
  4. Blair S. S. Compartments and appendage development in Drosophila. Bioessays. 1995 Apr;17(4):299–309. doi: 10.1002/bies.950170406. [DOI] [PubMed] [Google Scholar]
  5. Bourgouin C., Lundgren S. E., Thomas J. B. Apterous is a Drosophila LIM domain gene required for the development of a subset of embryonic muscles. Neuron. 1992 Sep;9(3):549–561. doi: 10.1016/0896-6273(92)90192-g. [DOI] [PubMed] [Google Scholar]
  6. Brand A. H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993 Jun;118(2):401–415. doi: 10.1242/dev.118.2.401. [DOI] [PubMed] [Google Scholar]
  7. Breen J. J., Agulnick A. D., Westphal H., Dawid I. B. Interactions between LIM domains and the LIM domain-binding protein Ldb1. J Biol Chem. 1998 Feb 20;273(8):4712–4717. doi: 10.1074/jbc.273.8.4712. [DOI] [PubMed] [Google Scholar]
  8. Calleja M., Moreno E., Pelaz S., Morata G. Visualization of gene expression in living adult Drosophila. Science. 1996 Oct 11;274(5285):252–255. doi: 10.1126/science.274.5285.252. [DOI] [PubMed] [Google Scholar]
  9. Cohen B., McGuffin M. E., Pfeifle C., Segal D., Cohen S. M. apterous, a gene required for imaginal disc development in Drosophila encodes a member of the LIM family of developmental regulatory proteins. Genes Dev. 1992 May;6(5):715–729. doi: 10.1101/gad.6.5.715. [DOI] [PubMed] [Google Scholar]
  10. Couso J. P., Knust E., Martinez Arias A. Serrate and wingless cooperate to induce vestigial gene expression and wing formation in Drosophila. Curr Biol. 1995 Dec 1;5(12):1437–1448. doi: 10.1016/s0960-9822(95)00281-8. [DOI] [PubMed] [Google Scholar]
  11. Curtiss J., Heilig J. S. DeLIMiting development. Bioessays. 1998 Jan;20(1):58–69. doi: 10.1002/(SICI)1521-1878(199801)20:1<58::AID-BIES9>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  12. Dawid I. B., Breen J. J., Toyama R. LIM domains: multiple roles as adapters and functional modifiers in protein interactions. Trends Genet. 1998 Apr;14(4):156–162. doi: 10.1016/s0168-9525(98)01424-3. [DOI] [PubMed] [Google Scholar]
  13. Diaz-Benjumea F. J., Cohen S. M. Interaction between dorsal and ventral cells in the imaginal disc directs wing development in Drosophila. Cell. 1993 Nov 19;75(4):741–752. doi: 10.1016/0092-8674(93)90494-b. [DOI] [PubMed] [Google Scholar]
  14. Durfee T., Becherer K., Chen P. L., Yeh S. H., Yang Y., Kilburn A. E., Lee W. H., Elledge S. J. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 1993 Apr;7(4):555–569. doi: 10.1101/gad.7.4.555. [DOI] [PubMed] [Google Scholar]
  15. Gill G. N. The enigma of LIM domains. Structure. 1995 Dec 15;3(12):1285–1289. doi: 10.1016/s0969-2126(01)00265-9. [DOI] [PubMed] [Google Scholar]
  16. Irvine K. D., Vogt T. F. Dorsal-ventral signaling in limb development. Curr Opin Cell Biol. 1997 Dec;9(6):867–876. doi: 10.1016/s0955-0674(97)80090-7. [DOI] [PubMed] [Google Scholar]
  17. Jurata L. W., Gill G. N. Functional analysis of the nuclear LIM domain interactor NLI. Mol Cell Biol. 1997 Oct;17(10):5688–5698. doi: 10.1128/mcb.17.10.5688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jurata L. W., Kenny D. A., Gill G. N. Nuclear LIM interactor, a rhombotin and LIM homeodomain interacting protein, is expressed early in neuronal development. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11693–11698. doi: 10.1073/pnas.93.21.11693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jurata L. W., Pfaff S. L., Gill G. N. The nuclear LIM domain interactor NLI mediates homo- and heterodimerization of LIM domain transcription factors. J Biol Chem. 1998 Feb 6;273(6):3152–3157. doi: 10.1074/jbc.273.6.3152. [DOI] [PubMed] [Google Scholar]
  20. Kim J., Irvine K. D., Carroll S. B. Cell recognition, signal induction, and symmetrical gene activation at the dorsal-ventral boundary of the developing Drosophila wing. Cell. 1995 Sep 8;82(5):795–802. doi: 10.1016/0092-8674(95)90476-x. [DOI] [PubMed] [Google Scholar]
  21. Kim J., Sebring A., Esch J. J., Kraus M. E., Vorwerk K., Magee J., Carroll S. B. Integration of positional signals and regulation of wing formation and identity by Drosophila vestigial gene. Nature. 1996 Jul 11;382(6587):133–138. doi: 10.1038/382133a0. [DOI] [PubMed] [Google Scholar]
  22. Lawrence P. A., Struhl G. Morphogens, compartments, and pattern: lessons from drosophila? Cell. 1996 Jun 28;85(7):951–961. doi: 10.1016/s0092-8674(00)81297-0. [DOI] [PubMed] [Google Scholar]
  23. Morata G., Ripoll P. Minutes: mutants of drosophila autonomously affecting cell division rate. Dev Biol. 1975 Feb;42(2):211–221. doi: 10.1016/0012-1606(75)90330-9. [DOI] [PubMed] [Google Scholar]
  24. Morcillo P., Rosen C., Baylies M. K., Dorsett D. Chip, a widely expressed chromosomal protein required for segmentation and activity of a remote wing margin enhancer in Drosophila. Genes Dev. 1997 Oct 15;11(20):2729–2740. doi: 10.1101/gad.11.20.2729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Neumann C. J., Cohen S. M. Long-range action of Wingless organizes the dorsal-ventral axis of the Drosophila wing. Development. 1997 Feb;124(4):871–880. doi: 10.1242/dev.124.4.871. [DOI] [PubMed] [Google Scholar]
  26. Poole S. J., Kauvar L. M., Drees B., Kornberg T. The engrailed locus of Drosophila: structural analysis of an embryonic transcript. Cell. 1985 Jan;40(1):37–43. doi: 10.1016/0092-8674(85)90306-x. [DOI] [PubMed] [Google Scholar]
  27. Rubin G. M., Spradling A. C. Genetic transformation of Drosophila with transposable element vectors. Science. 1982 Oct 22;218(4570):348–353. doi: 10.1126/science.6289436. [DOI] [PubMed] [Google Scholar]
  28. Speicher S. A., Thomas U., Hinz U., Knust E. The Serrate locus of Drosophila and its role in morphogenesis of the wing imaginal discs: control of cell proliferation. Development. 1994 Mar;120(3):535–544. doi: 10.1242/dev.120.3.535. [DOI] [PubMed] [Google Scholar]
  29. Sánchez-García I., Rabbitts T. H. The LIM domain: a new structural motif found in zinc-finger-like proteins. Trends Genet. 1994 Sep;10(9):315–320. doi: 10.1016/0168-9525(94)90034-5. [DOI] [PubMed] [Google Scholar]
  30. Tabata T., Schwartz C., Gustavson E., Ali Z., Kornberg T. B. Creating a Drosophila wing de novo, the role of engrailed, and the compartment border hypothesis. Development. 1995 Oct;121(10):3359–3369. doi: 10.1242/dev.121.10.3359. [DOI] [PubMed] [Google Scholar]
  31. Taira M., Otani H., Saint-Jeannet J. P., Dawid I. B. Role of the LIM class homeodomain protein Xlim-1 in neural and muscle induction by the Spemann organizer in Xenopus. Nature. 1994 Dec 15;372(6507):677–679. doi: 10.1038/372677a0. [DOI] [PubMed] [Google Scholar]
  32. Vachon G., Cohen B., Pfeifle C., McGuffin M. E., Botas J., Cohen S. M. Homeotic genes of the Bithorax complex repress limb development in the abdomen of the Drosophila embryo through the target gene Distal-less. Cell. 1992 Oct 30;71(3):437–450. doi: 10.1016/0092-8674(92)90513-c. [DOI] [PubMed] [Google Scholar]
  33. Wadman I. A., Osada H., Grütz G. G., Agulnick A. D., Westphal H., Forster A., Rabbitts T. H. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J. 1997 Jun 2;16(11):3145–3157. doi: 10.1093/emboj/16.11.3145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Xu T., Rubin G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development. 1993 Apr;117(4):1223–1237. doi: 10.1242/dev.117.4.1223. [DOI] [PubMed] [Google Scholar]
  35. Yeh E., Gustafson K., Boulianne G. L. Green fluorescent protein as a vital marker and reporter of gene expression in Drosophila. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):7036–7040. doi: 10.1073/pnas.92.15.7036. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES