Abstract
Group II introns are self-splicing RNA molecules that are of considerable interest as ribozymes, mobile genetic elements and examples of folded RNA. Although these introns are among the most common ribozymes, little is known about the chemical and structural determinants for their reactivity. By using nucleotide analog interference mapping (NAIM), it has been possible to identify the nucleotide functional groups (Rp phosphoryls, 2'-hydroxyls, guanosine exocyclic amines, adenosine N7 and N6) that are most important for composing the catalytic core of the intron. The majority of interference effects occur in clusters located within the two catalytically essential Domains 1 and 5 (D1 and D5). Collectively, the NAIM results indicate that key tetraloop-receptor interactions display a specific chemical signature, that the epsilon-epsilon' interaction includes an elaborate array of additional features and that one of the most important core structures is an uncharacterized three-way junction in D1. By combining NAIM with site-directed mutagenesis, a new tertiary interaction, kappa-kappa', was identified between this region and the most catalytically important section of D5, adjacent to the AGC triad in stem 1. Together with the known zeta-zeta' interaction, kappa-kappa' anchors D5 firmly into the D1 scaffold, thereby presenting chemically essential D5 functionalities for participation in catalysis.
Full Text
The Full Text of this article is available as a PDF (641.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abramovitz D. L., Friedman R. A., Pyle A. M. Catalytic role of 2'-hydroxyl groups within a group II intron active site. Science. 1996 Mar 8;271(5254):1410–1413. doi: 10.1126/science.271.5254.1410. [DOI] [PubMed] [Google Scholar]
- Abramovitz D. L., Pyle A. M. Remarkable morphological variability of a common RNA folding motif: the GNRA tetraloop-receptor interaction. J Mol Biol. 1997 Feb 28;266(3):493–506. doi: 10.1006/jmbi.1996.0810. [DOI] [PubMed] [Google Scholar]
- Arabshahi A., Frey P. A. A simplified procedure for synthesizing nucleoside 1-thiotriphosphates: dATP alpha S, dGTP alpha S, UTP alpha S, and dTTP alpha S. Biochem Biophys Res Commun. 1994 Oct 14;204(1):150–155. doi: 10.1006/bbrc.1994.2438. [DOI] [PubMed] [Google Scholar]
- Augustin S., Müller M. W., Schweyen R. J. Reverse self-splicing of group II intron RNAs in vitro. Nature. 1990 Jan 25;343(6256):383–386. doi: 10.1038/343383a0. [DOI] [PubMed] [Google Scholar]
- Battiste J. L., Mao H., Rao N. S., Tan R., Muhandiram D. R., Kay L. E., Frankel A. D., Williamson J. R. Alpha helix-RNA major groove recognition in an HIV-1 rev peptide-RRE RNA complex. Science. 1996 Sep 13;273(5281):1547–1551. doi: 10.1126/science.273.5281.1547. [DOI] [PubMed] [Google Scholar]
- Boulanger S. C., Faix P. H., Yang H., Zhuo J., Franzen J. S., Peebles C. L., Perlman P. S. Length changes in the joining segment between domains 5 and 6 of a group II intron inhibit self-splicing and alter 3' splice site selection. Mol Cell Biol. 1996 Oct;16(10):5896–5904. doi: 10.1128/mcb.16.10.5896. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brautigam C. A., Steitz T. A. Structural principles for the inhibition of the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates. J Mol Biol. 1998 Mar 27;277(2):363–377. doi: 10.1006/jmbi.1997.1586. [DOI] [PubMed] [Google Scholar]
- Cate J. H., Doudna J. A. Metal-binding sites in the major groove of a large ribozyme domain. Structure. 1996 Oct 15;4(10):1221–1229. doi: 10.1016/s0969-2126(96)00129-3. [DOI] [PubMed] [Google Scholar]
- Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Kundrot C. E., Cech T. R., Doudna J. A. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science. 1996 Sep 20;273(5282):1678–1685. doi: 10.1126/science.273.5282.1678. [DOI] [PubMed] [Google Scholar]
- Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Szewczak A. A., Kundrot C. E., Cech T. R., Doudna J. A. RNA tertiary structure mediation by adenosine platforms. Science. 1996 Sep 20;273(5282):1696–1699. doi: 10.1126/science.273.5282.1696. [DOI] [PubMed] [Google Scholar]
- Chanfreau G., Jacquier A. An RNA conformational change between the two chemical steps of group II self-splicing. EMBO J. 1996 Jul 1;15(13):3466–3476. [PMC free article] [PubMed] [Google Scholar]
- Chanfreau G., Jacquier A. Catalytic site components common to both splicing steps of a group II intron. Science. 1994 Nov 25;266(5189):1383–1387. doi: 10.1126/science.7973729. [DOI] [PubMed] [Google Scholar]
- Chanfreau G., Jacquier A. Interaction of intronic boundaries is required for the second splicing step efficiency of a group II intron. EMBO J. 1993 Dec 15;12(13):5173–5180. doi: 10.1002/j.1460-2075.1993.tb06212.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chin K., Pyle A. M. Branch-point attack in group II introns is a highly reversible transesterification, providing a potential proofreading mechanism for 5'-splice site selection. RNA. 1995 Jun;1(4):391–406. [PMC free article] [PubMed] [Google Scholar]
- Christian E. L., Yarus M. Analysis of the role of phosphate oxygens in the group I intron from Tetrahymena. J Mol Biol. 1992 Dec 5;228(3):743–758. doi: 10.1016/0022-2836(92)90861-d. [DOI] [PubMed] [Google Scholar]
- Conrad F., Hanne A., Gaur R. K., Krupp G. Enzymatic synthesis of 2'-modified nucleic acids: identification of important phosphate and ribose moieties in RNase P substrates. Nucleic Acids Res. 1995 Jun 11;23(11):1845–1853. doi: 10.1093/nar/23.11.1845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Costa M., Déme E., Jacquier A., Michel F. Multiple tertiary interactions involving domain II of group II self-splicing introns. J Mol Biol. 1997 Apr 4;267(3):520–536. doi: 10.1006/jmbi.1996.0882. [DOI] [PubMed] [Google Scholar]
- Costa M., Michel F. Frequent use of the same tertiary motif by self-folding RNAs. EMBO J. 1995 Mar 15;14(6):1276–1285. doi: 10.1002/j.1460-2075.1995.tb07111.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Costa M., Michel F. Rules for RNA recognition of GNRA tetraloops deduced by in vitro selection: comparison with in vivo evolution. EMBO J. 1997 Jun 2;16(11):3289–3302. doi: 10.1093/emboj/16.11.3289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dib-Hajj S. D., Boulanger S. C., Hebbar S. K., Peebles C. L., Franzen J. S., Perlman P. S. Domain 5 interacts with domain 6 and influences the second transesterification reaction of group II intron self-splicing. Nucleic Acids Res. 1993 Apr 25;21(8):1797–1804. doi: 10.1093/nar/21.8.1797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eckstein F., Gish G. Phosphorothioates in molecular biology. Trends Biochem Sci. 1989 Mar;14(3):97–100. doi: 10.1016/0968-0004(89)90130-8. [DOI] [PubMed] [Google Scholar]
- Freier S. M., Kierzek R., Jaeger J. A., Sugimoto N., Caruthers M. H., Neilson T., Turner D. H. Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9373–9377. doi: 10.1073/pnas.83.24.9373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaur R. K., McLaughlin L. W., Green M. R. Functional group substitutions of the branchpoint adenosine in a nuclear pre-mRNA and a group II intron. RNA. 1997 Aug;3(8):861–869. [PMC free article] [PubMed] [Google Scholar]
- Gautheret D., Konings D., Gutell R. R. A major family of motifs involving G.A mismatches in ribosomal RNA. J Mol Biol. 1994 Sep 9;242(1):1–8. doi: 10.1006/jmbi.1994.1552. [DOI] [PubMed] [Google Scholar]
- Gish G., Eckstein F. DNA and RNA sequence determination based on phosphorothioate chemistry. Science. 1988 Jun 10;240(4858):1520–1522. doi: 10.1126/science.2453926. [DOI] [PubMed] [Google Scholar]
- Green R., Szostak J. W., Benner S. A., Rich A., Usman N. Synthesis of RNA containing inosine: analysis of the sequence requirements for the 5' splice site of the Tetrahymena group I intron. Nucleic Acids Res. 1991 Aug 11;19(15):4161–4166. doi: 10.1093/nar/19.15.4161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffin E. A., Jr, Qin Z., Michels W. J., Jr, Pyle A. M. Group II intron ribozymes that cleave DNA and RNA linkages with similar efficiency, and lack contacts with substrate 2'-hydroxyl groups. Chem Biol. 1995 Nov;2(11):761–770. doi: 10.1016/1074-5521(95)90104-3. [DOI] [PubMed] [Google Scholar]
- Gutell R. R., Larsen N., Woese C. R. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev. 1994 Mar;58(1):10–26. doi: 10.1128/mr.58.1.10-26.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardt W. D., Erdmann V. A., Hartmann R. K. Rp-deoxy-phosphorothioate modification interference experiments identify 2'-OH groups in RNase P RNA that are crucial to tRNA binding. RNA. 1996 Dec;2(12):1189–1198. [PMC free article] [PubMed] [Google Scholar]
- Heus H. A., Wijmenga S. S., Hoppe H., Hilbers C. W. The detailed structure of tandem G.A mismatched base-pair motifs in RNA duplexes is context dependent. J Mol Biol. 1997 Aug 8;271(1):147–158. doi: 10.1006/jmbi.1997.1158. [DOI] [PubMed] [Google Scholar]
- Huang Z., Szostak J. W. A simple method for 3'-labeling of RNA. Nucleic Acids Res. 1996 Nov 1;24(21):4360–4361. doi: 10.1093/nar/24.21.4360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacquier A., Michel F. Base-pairing interactions involving the 5' and 3'-terminal nucleotides of group II self-splicing introns. J Mol Biol. 1990 Jun 5;213(3):437–447. doi: 10.1016/S0022-2836(05)80206-2. [DOI] [PubMed] [Google Scholar]
- Jacquier A., Michel F. Multiple exon-binding sites in class II self-splicing introns. Cell. 1987 Jul 3;50(1):17–29. doi: 10.1016/0092-8674(87)90658-1. [DOI] [PubMed] [Google Scholar]
- Jestin J. L., Dème E., Jacquier A. Identification of structural elements critical for inter-domain interactions in a group II self-splicing intron. EMBO J. 1997 May 15;16(10):2945–2954. doi: 10.1093/emboj/16.10.2945. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jucker F. M., Heus H. A., Yip P. F., Moors E. H., Pardi A. A network of heterogeneous hydrogen bonds in GNRA tetraloops. J Mol Biol. 1996 Dec 20;264(5):968–980. doi: 10.1006/jmbi.1996.0690. [DOI] [PubMed] [Google Scholar]
- Koch J. L., Boulanger S. C., Dib-Hajj S. D., Hebbar S. K., Perlman P. S. Group II introns deleted for multiple substructures retain self-splicing activity. Mol Cell Biol. 1992 May;12(5):1950–1958. doi: 10.1128/mcb.12.5.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kunkel T. A., Bebenek K., McClary J. Efficient site-directed mutagenesis using uracil-containing DNA. Methods Enzymol. 1991;204:125–139. doi: 10.1016/0076-6879(91)04008-c. [DOI] [PubMed] [Google Scholar]
- Kwakman J. H., Konings D. A., Hogeweg P., Pel H. J., Grivell L. A. Structural analysis of a group II intron by chemical modifications and minimal energy calculations. J Biomol Struct Dyn. 1990 Oct;8(2):413–430. doi: 10.1080/07391102.1990.10507813. [DOI] [PubMed] [Google Scholar]
- LeCuyer K. A., Behlen L. S., Uhlenbeck O. C. Mutagenesis of a stacking contact in the MS2 coat protein-RNA complex. EMBO J. 1996 Dec 16;15(24):6847–6853. [PMC free article] [PubMed] [Google Scholar]
- Legault P., Li J., Mogridge J., Kay L. E., Greenblatt J. NMR structure of the bacteriophage lambda N peptide/boxB RNA complex: recognition of a GNRA fold by an arginine-rich motif. Cell. 1998 Apr 17;93(2):289–299. doi: 10.1016/s0092-8674(00)81579-2. [DOI] [PubMed] [Google Scholar]
- Limmer S. Mismatch base pairs in RNA. Prog Nucleic Acid Res Mol Biol. 1997;57:1–39. doi: 10.1016/s0079-6603(08)60276-7. [DOI] [PubMed] [Google Scholar]
- Liu Q., Green J. B., Khodadadi A., Haeberli P., Beigelman L., Pyle A. M. Branch-site selection in a group II intron mediated by active recognition of the adenine amino group and steric exclusion of non-adenine functionalities. J Mol Biol. 1997 Mar 21;267(1):163–171. doi: 10.1006/jmbi.1996.0845. [DOI] [PubMed] [Google Scholar]
- Loverix S., Winquist A., Strömberg R., Steyaert J. An engineered ribonuclease preferring phosphorothioate RNA. Nat Struct Biol. 1998 May;5(5):365–368. doi: 10.1038/nsb0598-365. [DOI] [PubMed] [Google Scholar]
- Massire C., Jaeger L., Westhof E. Derivation of the three-dimensional architecture of bacterial ribonuclease P RNAs from comparative sequence analysis. J Mol Biol. 1998 Jun 19;279(4):773–793. doi: 10.1006/jmbi.1998.1797. [DOI] [PubMed] [Google Scholar]
- Michel F., Ferat J. L. Structure and activities of group II introns. Annu Rev Biochem. 1995;64:435–461. doi: 10.1146/annurev.bi.64.070195.002251. [DOI] [PubMed] [Google Scholar]
- Michel F., Umesono K., Ozeki H. Comparative and functional anatomy of group II catalytic introns--a review. Gene. 1989 Oct 15;82(1):5–30. doi: 10.1016/0378-1119(89)90026-7. [DOI] [PubMed] [Google Scholar]
- Michels W. J., Jr, Pyle A. M. Conversion of a group II intron into a new multiple-turnover ribozyme that selectively cleaves oligonucleotides: elucidation of reaction mechanism and structure/function relationships. Biochemistry. 1995 Mar 7;34(9):2965–2977. doi: 10.1021/bi00009a028. [DOI] [PubMed] [Google Scholar]
- Mirau P. A., Kearns D. R. Effect of environment, conformation, sequence and base substituents on the imino proton exchange rates in guanine and inosine-containing DNA, RNA, and DNA-RNA duplexes. J Mol Biol. 1984 Aug 5;177(2):207–227. doi: 10.1016/0022-2836(84)90453-4. [DOI] [PubMed] [Google Scholar]
- Mörl M., Schmelzer C. Integration of group II intron bI1 into a foreign RNA by reversal of the self-splicing reaction in vitro. Cell. 1990 Feb 23;60(4):629–636. doi: 10.1016/0092-8674(90)90666-3. [DOI] [PubMed] [Google Scholar]
- Nolte A., Chanfreau G., Jacquier A. Influence of substrate structure on in vitro ribozyme activity of a group II intron. RNA. 1998 Jun;4(6):694–708. doi: 10.1017/s1355838298980165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ortoleva-Donnelly L., Szewczak A. A., Gutell R. R., Strobel S. A. The chemical basis of adenosine conservation throughout the Tetrahymena ribozyme. RNA. 1998 May;4(5):498–519. doi: 10.1017/s1355838298980086. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Padgett R. A., Podar M., Boulanger S. C., Perlman P. S. The stereochemical course of group II intron self-splicing. Science. 1994 Dec 9;266(5191):1685–1688. doi: 10.1126/science.7527587. [DOI] [PubMed] [Google Scholar]
- Pecoraro V. L., Hermes J. D., Cleland W. W. Stability constants of Mg2+ and Cd2+ complexes of adenine nucleotides and thionucleotides and rate constants for formation and dissociation of MgATP and MgADP. Biochemistry. 1984 Oct 23;23(22):5262–5271. doi: 10.1021/bi00317a026. [DOI] [PubMed] [Google Scholar]
- Peebles C. L., Perlman P. S., Mecklenburg K. L., Petrillo M. L., Tabor J. H., Jarrell K. A., Cheng H. L. A self-splicing RNA excises an intron lariat. Cell. 1986 Jan 31;44(2):213–223. doi: 10.1016/0092-8674(86)90755-5. [DOI] [PubMed] [Google Scholar]
- Peebles C. L., Zhang M., Perlman P. S., Franzen J. S. Catalytically critical nucleotide in domain 5 of a group II intron. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4422–4426. doi: 10.1073/pnas.92.10.4422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pley H. W., Flaherty K. M., McKay D. B. Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. Nature. 1994 Nov 3;372(6501):111–113. doi: 10.1038/372111a0. [DOI] [PubMed] [Google Scholar]
- Podar M., Chu V. T., Pyle A. M., Perlman P. S. Group II intron splicing in vivo by first-step hydrolysis. Nature. 1998 Feb 26;391(6670):915–918. doi: 10.1038/36142. [DOI] [PubMed] [Google Scholar]
- Podar M., Dib-Hajj S., Perlman P. S. A UV-induced, Mg(2+)-dependent crosslink traps an active form of domain 3 of a self-splicing group II intron. RNA. 1995 Oct;1(8):828–840. [PMC free article] [PubMed] [Google Scholar]
- Podar M., Perlman P. S., Padgett R. A. Stereochemical selectivity of group II intron splicing, reverse splicing, and hydrolysis reactions. Mol Cell Biol. 1995 Aug;15(8):4466–4478. doi: 10.1128/mcb.15.8.4466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Podar M., Zhuo J., Zhang M., Franzen J. S., Perlman P. S., Peebles C. L. Domain 5 binds near a highly conserved dinucleotide in the joiner linking domains 2 and 3 of a group II intron. RNA. 1998 Feb;4(2):151–166. [PMC free article] [PubMed] [Google Scholar]
- Pyle A. M., Green J. B. Building a kinetic framework for group II intron ribozyme activity: quantitation of interdomain binding and reaction rate. Biochemistry. 1994 Mar 8;33(9):2716–2725. doi: 10.1021/bi00175a047. [DOI] [PubMed] [Google Scholar]
- Pyle A. M., Green J. B. RNA folding. Curr Opin Struct Biol. 1995 Jun;5(3):303–310. doi: 10.1016/0959-440x(95)80091-3. [DOI] [PubMed] [Google Scholar]
- Pyle A. M., Murphy F. L., Cech T. R. RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme. Nature. 1992 Jul 9;358(6382):123–128. doi: 10.1038/358123a0. [DOI] [PubMed] [Google Scholar]
- Qin P. Z., Pyle A. M. The architectural organization and mechanistic function of group II intron structural elements. Curr Opin Struct Biol. 1998 Jun;8(3):301–308. doi: 10.1016/s0959-440x(98)80062-6. [DOI] [PubMed] [Google Scholar]
- Santoro S. W., Joyce G. F. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4262–4266. doi: 10.1073/pnas.94.9.4262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmelzer C., Schweyen R. J. Self-splicing of group II introns in vitro: mapping of the branch point and mutational inhibition of lariat formation. Cell. 1986 Aug 15;46(4):557–565. doi: 10.1016/0092-8674(86)90881-0. [DOI] [PubMed] [Google Scholar]
- Schmidt U., Podar M., Stahl U., Perlman P. S. Mutations of the two-nucleotide bulge of D5 of a group II intron block splicing in vitro and in vivo: phenotypes and suppressor mutations. RNA. 1996 Nov;2(11):1161–1172. [PMC free article] [PubMed] [Google Scholar]
- Sousa R., Padilla R. A mutant T7 RNA polymerase as a DNA polymerase. EMBO J. 1995 Sep 15;14(18):4609–4621. doi: 10.1002/j.1460-2075.1995.tb00140.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strobel S. A., Cech T. R. Tertiary interactions with the internal guide sequence mediate docking of the P1 helix into the catalytic core of the Tetrahymena ribozyme. Biochemistry. 1993 Dec 14;32(49):13593–13604. doi: 10.1021/bi00212a027. [DOI] [PubMed] [Google Scholar]
- Strobel S. A., Ortoleva-Donnelly L., Ryder S. P., Cate J. H., Moncoeur E. Complementary sets of noncanonical base pairs mediate RNA helix packing in the group I intron active site. Nat Struct Biol. 1998 Jan;5(1):60–66. doi: 10.1038/nsb0198-60. [DOI] [PubMed] [Google Scholar]
- Strobel S. A., Shetty K. Defining the chemical groups essential for Tetrahymena group I intron function by nucleotide analog interference mapping. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):2903–2908. doi: 10.1073/pnas.94.7.2903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suchy M., Schmelzer C. Restoration of the self-splicing activity of a defective group II intron by a small trans-acting RNA. J Mol Biol. 1991 Nov 20;222(2):179–187. doi: 10.1016/0022-2836(91)90204-j. [DOI] [PubMed] [Google Scholar]
- Xiang Q., Qin P. Z., Michels W. J., Freeland K., Pyle A. M. Sequence specificity of a group II intron ribozyme: multiple mechanisms for promoting unusually high discrimination against mismatched targets. Biochemistry. 1998 Mar 17;37(11):3839–3849. doi: 10.1021/bi972661n. [DOI] [PubMed] [Google Scholar]
- Zimmerly S., Guo H., Eskes R., Yang J., Perlman P. S., Lambowitz A. M. A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. Cell. 1995 Nov 17;83(4):529–538. doi: 10.1016/0092-8674(95)90092-6. [DOI] [PubMed] [Google Scholar]