Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Dec 15;17(24):7250–7259. doi: 10.1093/emboj/17.24.7250

Low-affinity nerve-growth factor receptor (P75NTR) can serve as a receptor for rabies virus.

C Tuffereau 1, J Bénéjean 1, D Blondel 1, B Kieffer 1, A Flamand 1
PMCID: PMC1171071  PMID: 9857182

Abstract

A random-primed cDNA expression library constructed from the mRNA of neuroblastoma cells (NG108) was used to clone a specific rabies virus (RV) receptor. A soluble form of the RV glycoprotein (Gs) was utilized as a ligand to detect positive cells. We identified the murine low-affinity nerve-growth factor receptor, p75NTR. BSR cells stably expressing p75NTR were able to bind Gs and G-expressing lepidopteran cells. The ability of the RV glycoprotein to bind p75NTR was dependent on the presence of a lysine and arginine in positions 330 and 333 respectively of antigenic site III, which is known to control virus penetration into motor and sensory neurons of adult mice. P75NTR-expressing BSR cells were permissive for a non-adapted fox RV isolate (street virus) and nerve growth factor (NGF) decreased this infection. In infected cells, p75NTR associates with the RV glycoprotein and could be precipitated with anti-G monoclonal antibodies. Therefore, p75NTR is a receptor for street RV.

Full Text

The Full Text of this article is available as a PDF (418.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbacid M. The Trk family of neurotrophin receptors. J Neurobiol. 1994 Nov;25(11):1386–1403. doi: 10.1002/neu.480251107. [DOI] [PubMed] [Google Scholar]
  2. Barsoum J., Brown R., McKee M., Boyce F. M. Efficient transduction of mammalian cells by a recombinant baculovirus having the vesicular stomatitis virus G glycoprotein. Hum Gene Ther. 1997 Nov 20;8(17):2011–2018. doi: 10.1089/hum.1997.8.17-2011. [DOI] [PubMed] [Google Scholar]
  3. Bartz R., Firsching R., Rima B., ter Meulen V., Schneider-Schaulies J. Differential receptor usage by measles virus strains. J Gen Virol. 1998 May;79(Pt 5):1015–1025. doi: 10.1099/0022-1317-79-5-1015. [DOI] [PubMed] [Google Scholar]
  4. Bates P., Young J. A., Varmus H. E. A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor. Cell. 1993 Sep 24;74(6):1043–1051. doi: 10.1016/0092-8674(93)90726-7. [DOI] [PubMed] [Google Scholar]
  5. Benmansour A., Brahimi M., Tuffereau C., Coulon P., Lafay F., Flamand A. Rapid sequence evolution of street rabies glycoprotein is related to the highly heterogeneous nature of the viral population. Virology. 1992 Mar;187(1):33–45. doi: 10.1016/0042-6822(92)90292-w. [DOI] [PubMed] [Google Scholar]
  6. Benmansour A., Leblois H., Coulon P., Tuffereau C., Gaudin Y., Flamand A., Lafay F. Antigenicity of rabies virus glycoprotein. J Virol. 1991 Aug;65(8):4198–4203. doi: 10.1128/jvi.65.8.4198-4203.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bothwell M. Functional interactions of neurotrophins and neurotrophin receptors. Annu Rev Neurosci. 1995;18:223–253. doi: 10.1146/annurev.ne.18.030195.001255. [DOI] [PubMed] [Google Scholar]
  8. Bredesen D. E., Rabizadeh S. p75NTR and apoptosis: Trk-dependent and Trk-independent effects. Trends Neurosci. 1997 Jul;20(7):287–290. doi: 10.1016/s0166-2236(96)01049-1. [DOI] [PubMed] [Google Scholar]
  9. Brojatsch J., Naughton J., Rolls M. M., Zingler K., Young J. A. CAR1, a TNFR-related protein, is a cellular receptor for cytopathic avian leukosis-sarcoma viruses and mediates apoptosis. Cell. 1996 Nov 29;87(5):845–855. doi: 10.1016/s0092-8674(00)81992-3. [DOI] [PubMed] [Google Scholar]
  10. Broughan J. H., Wunner W. H. Characterization of protein involvement in rabies virus binding to BHK-21 cells. Arch Virol. 1995;140(1):75–93. doi: 10.1007/BF01309725. [DOI] [PubMed] [Google Scholar]
  11. Bunschoten H., Gore M., Claassen I. J., Uytdehaag F. G., Dietzschold B., Wunner W. H., Osterhaus A. D. Characterization of a new virus-neutralizing epitope that denotes a sequential determinant on the rabies virus glycoprotein. J Gen Virol. 1989 Feb;70(Pt 2):291–298. doi: 10.1099/0022-1317-70-2-291. [DOI] [PubMed] [Google Scholar]
  12. Burrage T. G., Tignor G. H., Smith A. L. Rabies virus binding at neuromuscular junctions. Virus Res. 1985 Apr;2(3):273–289. doi: 10.1016/0168-1702(85)90014-0. [DOI] [PubMed] [Google Scholar]
  13. Chao M. V. The p75 neurotrophin receptor. J Neurobiol. 1994 Nov;25(11):1373–1385. doi: 10.1002/neu.480251106. [DOI] [PubMed] [Google Scholar]
  14. Charlton K. M. The pathogenesis of rabies and other lyssaviral infections: recent studies. Curr Top Microbiol Immunol. 1994;187:95–119. doi: 10.1007/978-3-642-78490-3_6. [DOI] [PubMed] [Google Scholar]
  15. Conti C., Superti F., Tsiang H. Membrane carbohydrate requirement for rabies virus binding to chicken embryo related cells. Intervirology. 1986;26(3):164–168. doi: 10.1159/000149696. [DOI] [PubMed] [Google Scholar]
  16. Coulon P., Derbin C., Kucera P., Lafay F., Prehaud C., Flamand A. Invasion of the peripheral nervous systems of adult mice by the CVS strain of rabies virus and its avirulent derivative AvO1. J Virol. 1989 Aug;63(8):3550–3554. doi: 10.1128/jvi.63.8.3550-3554.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Coulon P., Ternaux J. P., Flamand A., Tuffereau C. An avirulent mutant of rabies virus is unable to infect motoneurons in vivo and in vitro. J Virol. 1998 Jan;72(1):273–278. doi: 10.1128/jvi.72.1.273-278.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. DiStefano P. S., Johnson E. M., Jr Identification of a truncated form of the nerve growth factor receptor. Proc Natl Acad Sci U S A. 1988 Jan;85(1):270–274. doi: 10.1073/pnas.85.1.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Dietzschold B., Wiktor T. J., Trojanowski J. Q., Macfarlan R. I., Wunner W. H., Torres-Anjel M. J., Koprowski H. Differences in cell-to-cell spread of pathogenic and apathogenic rabies virus in vivo and in vitro. J Virol. 1985 Oct;56(1):12–18. doi: 10.1128/jvi.56.1.12-18.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Dietzschold B., Wiktor T. J., Wunner W. H., Varrichio A. Chemical and immunological analysis of the rabies soluble glycoprotein. Virology. 1983 Jan 30;124(2):330–337. doi: 10.1016/0042-6822(83)90349-5. [DOI] [PubMed] [Google Scholar]
  21. Dietzschold B., Wunner W. H., Wiktor T. J., Lopes A. D., Lafon M., Smith C. L., Koprowski H. Characterization of an antigenic determinant of the glycoprotein that correlates with pathogenicity of rabies virus. Proc Natl Acad Sci U S A. 1983 Jan;80(1):70–74. doi: 10.1073/pnas.80.1.70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gastka M., Horvath J., Lentz T. L. Rabies virus binding to the nicotinic acetylcholine receptor alpha subunit demonstrated by virus overlay protein binding assay. J Gen Virol. 1996 Oct;77(Pt 10):2437–2440. doi: 10.1099/0022-1317-77-10-2437. [DOI] [PubMed] [Google Scholar]
  23. Gaudin Y., Ruigrok R. W., Tuffereau C., Knossow M., Flamand A. Rabies virus glycoprotein is a trimer. Virology. 1992 Apr;187(2):627–632. doi: 10.1016/0042-6822(92)90465-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Gosztonyi G. Reproduction of lyssaviruses: ultrastructural composition of lyssavirus and functional aspects of pathogenesis. Curr Top Microbiol Immunol. 1994;187:43–68. doi: 10.1007/978-3-642-78490-3_3. [DOI] [PubMed] [Google Scholar]
  25. Hanham C. A., Zhao F., Tignor G. H. Evidence from the anti-idiotypic network that the acetylcholine receptor is a rabies virus receptor. J Virol. 1993 Jan;67(1):530–542. doi: 10.1128/jvi.67.1.530-542.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Harrison A. K., Murphy F. A. Lyssavirus infection of muscle spindles and motor end plates in striated muscle of hamsters. Arch Virol. 1978;57(2):167–175. doi: 10.1007/BF01315678. [DOI] [PubMed] [Google Scholar]
  27. Ibáez C. F. Neurotrophic factors: from structure-function studies to designing effective therapeutics. Trends Biotechnol. 1995 Jun;13(6):217–227. doi: 10.1016/S0167-7799(00)88949-0. [DOI] [PubMed] [Google Scholar]
  28. Jackson A. C., Rossiter J. P. Apoptosis plays an important role in experimental rabies virus infection. J Virol. 1997 Jul;71(7):5603–5607. doi: 10.1128/jvi.71.7.5603-5607.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Jarvis D. L., Finn E. E. Biochemical analysis of the N-glycosylation pathway in baculovirus-infected lepidopteran insect cells. Virology. 1995 Oct 1;212(2):500–511. doi: 10.1006/viro.1995.1508. [DOI] [PubMed] [Google Scholar]
  30. Johnson D., Lanahan A., Buck C. R., Sehgal A., Morgan C., Mercer E., Bothwell M., Chao M. Expression and structure of the human NGF receptor. Cell. 1986 Nov 21;47(4):545–554. doi: 10.1016/0092-8674(86)90619-7. [DOI] [PubMed] [Google Scholar]
  31. KISSLING R. E. Growth of rabies virus in non-nervous tissue culture. Proc Soc Exp Biol Med. 1958 Jun;98(2):223–225. doi: 10.3181/00379727-98-23997. [DOI] [PubMed] [Google Scholar]
  32. Kieffer B. L., Befort K., Gaveriaux-Ruff C., Hirth C. G. The delta-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12048–12052. doi: 10.1073/pnas.89.24.12048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kieffer B. L. Optimised cDNA size selection and cloning procedure for the construction of representative plasmid cDNA libraries. Gene. 1991 Dec 20;109(1):115–119. doi: 10.1016/0378-1119(91)90595-3. [DOI] [PubMed] [Google Scholar]
  34. Lafay F., Benmansour A., Chebli K., Flamand A. Immunodominant epitopes defined by a yeast-expressed library of random fragments of the rabies virus glycoprotein map outside major antigenic sites. J Gen Virol. 1996 Feb;77(Pt 2):339–346. doi: 10.1099/0022-1317-77-2-339. [DOI] [PubMed] [Google Scholar]
  35. Lafay F., Bénéjean J., Tuffereau C., Flamand A., Coulon P. Vaccination against rabies: construction and characterization of SAG2, a double avirulent derivative of SADBern. Vaccine. 1994 Mar;12(4):317–320. doi: 10.1016/0264-410x(94)90095-7. [DOI] [PubMed] [Google Scholar]
  36. Lafay F., Coulon P., Astic L., Saucier D., Riche D., Holley A., Flamand A. Spread of the CVS strain of rabies virus and of the avirulent mutant AvO1 along the olfactory pathways of the mouse after intranasal inoculation. Virology. 1991 Jul;183(1):320–330. doi: 10.1016/0042-6822(91)90145-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Large T. H., Weskamp G., Helder J. C., Radeke M. J., Misko T. P., Shooter E. M., Reichardt L. F. Structure and developmental expression of the nerve growth factor receptor in the chicken central nervous system. Neuron. 1989 Feb;2(2):1123–1134. doi: 10.1016/0896-6273(89)90179-7. [DOI] [PubMed] [Google Scholar]
  38. Lentz T. L., Benson R. J., Klimowicz D., Wilson P. T., Hawrot E. Binding of rabies virus to purified Torpedo acetylcholine receptor. Brain Res. 1986 Dec;387(3):211–219. doi: 10.1016/0169-328x(86)90027-6. [DOI] [PubMed] [Google Scholar]
  39. Lentz T. L., Wilson P. T., Hawrot E., Speicher D. W. Amino acid sequence similarity between rabies virus glycoprotein and snake venom curaremimetic neurotoxins. Science. 1984 Nov 16;226(4676):847–848. doi: 10.1126/science.6494916. [DOI] [PubMed] [Google Scholar]
  40. Liepinsh E., Ilag L. L., Otting G., Ibáez C. F. NMR structure of the death domain of the p75 neurotrophin receptor. EMBO J. 1997 Aug 15;16(16):4999–5005. doi: 10.1093/emboj/16.16.4999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. McGehee D. S., Role L. W. Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu Rev Physiol. 1995;57:521–546. doi: 10.1146/annurev.ph.57.030195.002513. [DOI] [PubMed] [Google Scholar]
  42. Montgomery R. I., Warner M. S., Lum B. J., Spear P. G. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell. 1996 Nov 1;87(3):427–436. doi: 10.1016/s0092-8674(00)81363-x. [DOI] [PubMed] [Google Scholar]
  43. Morimoto K., Iwatani Y., Kawai A. Shedding of Gs protein (a soluble form of the viral glycoprotein) by the rabies virus-infected BHK-21 cells. Virology. 1993 Aug;195(2):541–549. doi: 10.1006/viro.1993.1405. [DOI] [PubMed] [Google Scholar]
  44. Murphy F. A., Bauer S. P., Harrison A. K., Winn W. C., Jr Comparative pathogenesis of rabies and rabies-like viruses. Viral infection and transit from inoculation site to the central nervous system. Lab Invest. 1973 Mar;28(3):361–376. [PubMed] [Google Scholar]
  45. Murphy F. A., Harrison A. K., Winn W. C., Bauer S. P. Comparative pathogenesis of rabies and rabies-like viruses: infection of the central nervous system and centrifugal spread of virus to peripheral tissues. Lab Invest. 1973 Jul;29(1):1–16. [PubMed] [Google Scholar]
  46. Nelson P., Christian C., Nirenberg M. Synapse formation between clonal neuroblastoma X glioma hybrid cells and striated muscle cells. Proc Natl Acad Sci U S A. 1976 Jan;73(1):123–127. doi: 10.1073/pnas.73.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Perrin P., Joffret M. L., Leclerc C., Oth D., Sureau P., Thibodeau L. Interleukin 2 increases protection against experimental rabies. Immunobiology. 1988 May;177(2):199–209. doi: 10.1016/S0171-2985(88)80039-1. [DOI] [PubMed] [Google Scholar]
  48. Powell R. M., Schmitt V., Ward T., Goodfellow I., Evans D. J., Almond J. W. Characterization of echoviruses that bind decay accelerating factor (CD55): evidence that some haemagglutinating strains use more than one cellular receptor. J Gen Virol. 1998 Jul;79(Pt 7):1707–1713. doi: 10.1099/0022-1317-79-7-1707. [DOI] [PubMed] [Google Scholar]
  49. Prehaud C., Coulon P., LaFay F., Thiers C., Flamand A. Antigenic site II of the rabies virus glycoprotein: structure and role in viral virulence. J Virol. 1988 Jan;62(1):1–7. doi: 10.1128/jvi.62.1.1-7.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Prehaud C., Takehara K., Flamand A., Bishop D. H. Immunogenic and protective properties of rabies virus glycoprotein expressed by baculovirus vectors. Virology. 1989 Dec;173(2):390–399. doi: 10.1016/0042-6822(89)90551-5. [DOI] [PubMed] [Google Scholar]
  51. Radeke M. J., Misko T. P., Hsu C., Herzenberg L. A., Shooter E. M. Gene transfer and molecular cloning of the rat nerve growth factor receptor. Nature. 1987 Feb 12;325(6105):593–597. doi: 10.1038/325593a0. [DOI] [PubMed] [Google Scholar]
  52. Raux H., Coulon P., Lafay F., Flamand A. Monoclonal antibodies which recognize the acidic configuration of the rabies glycoprotein at the surface of the virion can be neutralizing. Virology. 1995 Jul 10;210(2):400–408. doi: 10.1006/viro.1995.1356. [DOI] [PubMed] [Google Scholar]
  53. Riccio A., Pierchala B. A., Ciarallo C. L., Ginty D. D. An NGF-TrkA-mediated retrograde signal to transcription factor CREB in sympathetic neurons. Science. 1997 Aug 22;277(5329):1097–1100. doi: 10.1126/science.277.5329.1097. [DOI] [PubMed] [Google Scholar]
  54. Schneider L. G., Horzinek M., Matheka H. D. Purification of rabies virus from tissue culture. Arch Gesamte Virusforsch. 1971;34(4):351–359. doi: 10.1007/BF01242982. [DOI] [PubMed] [Google Scholar]
  55. Seganti L., Superti F., Bianchi S., Orsi N., Divizia M., Panà A. Susceptibility of mammalian, avian, fish, and mosquito cell lines to rabies virus infection. Acta Virol. 1990 Apr;34(2):155–163. [PubMed] [Google Scholar]
  56. Seif I., Coulon P., Rollin P. E., Flamand A. Rabies virulence: effect on pathogenicity and sequence characterization of rabies virus mutations affecting antigenic site III of the glycoprotein. J Virol. 1985 Mar;53(3):926–934. doi: 10.1128/jvi.53.3.926-934.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Shankar V., Dietzschold B., Koprowski H. Direct entry of rabies virus into the central nervous system without prior local replication. J Virol. 1991 May;65(5):2736–2738. doi: 10.1128/jvi.65.5.2736-2738.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Southern P. J., Berg P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1(4):327–341. [PubMed] [Google Scholar]
  59. Superti F., Hauttecoeur B., Morelec M. J., Goldoni P., Bizzini B., Tsiang H. Involvement of gangliosides in rabies virus infection. J Gen Virol. 1986 Jan;67(Pt 1):47–56. doi: 10.1099/0022-1317-67-1-47. [DOI] [PubMed] [Google Scholar]
  60. Superti F., Seganti L., Tsiang H., Orsi N. Role of phospholipids in rhabdovirus attachment to CER cells. Brief report. Arch Virol. 1984;81(3-4):321–328. doi: 10.1007/BF01310002. [DOI] [PubMed] [Google Scholar]
  61. Thoulouze M. I., Lafage M., Schachner M., Hartmann U., Cremer H., Lafon M. The neural cell adhesion molecule is a receptor for rabies virus. J Virol. 1998 Sep;72(9):7181–7190. doi: 10.1128/jvi.72.9.7181-7190.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Tsiang H. Evidence for an intraaxonal transport of fixed and street rabies virus. J Neuropathol Exp Neurol. 1979 May;38(3):286–299. doi: 10.1097/00005072-197905000-00008. [DOI] [PubMed] [Google Scholar]
  63. Tuffereau C., Benejean J., Alfonso A. M., Flamand A., Fishman M. C. Neuronal cell surface molecules mediate specific binding to rabies virus glycoprotein expressed by a recombinant baculovirus on the surfaces of lepidopteran cells. J Virol. 1998 Feb;72(2):1085–1091. doi: 10.1128/jvi.72.2.1085-1091.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Tuffereau C., Leblois H., Bénéjean J., Coulon P., Lafay F., Flamand A. Arginine or lysine in position 333 of ERA and CVS glycoprotein is necessary for rabies virulence in adult mice. Virology. 1989 Sep;172(1):206–212. doi: 10.1016/0042-6822(89)90122-0. [DOI] [PubMed] [Google Scholar]
  65. WIKTOR T. J., FERNANDES M. V., KOPROWSKI H. CULTIVATION OF RABIES VIRUS IN HUMAN DIPLOID CELL STRAIN WI-38. J Immunol. 1964 Sep;93:353–366. [PubMed] [Google Scholar]
  66. Ward T., Pipkin P. A., Clarkson N. A., Stone D. M., Minor P. D., Almond J. W. Decay-accelerating factor CD55 is identified as the receptor for echovirus 7 using CELICS, a rapid immuno-focal cloning method. EMBO J. 1994 Nov 1;13(21):5070–5074. doi: 10.1002/j.1460-2075.1994.tb06836.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Whitt M. A., Buonocore L., Prehaud C., Rose J. K. Membrane fusion activity, oligomerization, and assembly of the rabies virus glycoprotein. Virology. 1991 Dec;185(2):681–688. doi: 10.1016/0042-6822(91)90539-n. [DOI] [PubMed] [Google Scholar]
  68. Wunner W. H., Reagan K. J., Koprowski H. Characterization of saturable binding sites for rabies virus. J Virol. 1984 Jun;50(3):691–697. doi: 10.1128/jvi.50.3.691-697.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES