Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Dec 15;17(24):7282–7293. doi: 10.1093/emboj/17.24.7282

A function-structure model for NGF-activated TRK.

M E Cunningham 1, L A Greene 1
PMCID: PMC1171074  PMID: 9857185

Abstract

Mechanisms regulating transit of receptor tyrosine kinases (RTKs) from inactive to active states are incompletely described, but require autophosphorylation of tyrosine(s) within a kinase domain 'activation loop'. Here, we employ functional biological assays with mutated TRK receptors to assess a 'switch' model for RTK activation. In this model: (i) ligand binding stimulates activation loop tyrosine phosphorylation; (ii) these phosphotyrosines form specific charge pairs with nearby basic residues; and (iii) the charge pairs stabilize a functionally active conformation in which the activation loop is restrained from blocking access to the kinase catalytic core. Our findings both support this model and identify residues that form specific charge pairs with each of the three TRK activation loop phosphotyrosines.

Full Text

The Full Text of this article is available as a PDF (562.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baron V., Kaliman P., Gautier N., Van Obberghen E. The insulin receptor activation process involves localized conformational changes. J Biol Chem. 1992 Nov 15;267(32):23290–23294. [PubMed] [Google Scholar]
  2. Bossemeyer D. Protein kinases--structure and function. FEBS Lett. 1995 Aug 1;369(1):57–61. doi: 10.1016/0014-5793(95)00580-3. [DOI] [PubMed] [Google Scholar]
  3. Cama A., Quon M. J., de la Luz Sierra M., Taylor S. I. Substitution of isoleucine for methionine at position 1153 in the beta-subunit of the human insulin receptor. A mutation that impairs receptor tyrosine kinase activity, receptor endocytosis, and insulin action. J Biol Chem. 1992 Apr 25;267(12):8383–8389. [PubMed] [Google Scholar]
  4. Cama A., de la Luz Sierra M., Ottini L., Kadowaki T., Gorden P., Imperato-McGinley J., Taylor S. I. A mutation in the tyrosine kinase domain of the insulin receptor associated with insulin resistance in an obese woman. J Clin Endocrinol Metab. 1991 Oct;73(4):894–901. doi: 10.1210/jcem-73-4-894. [DOI] [PubMed] [Google Scholar]
  5. Canagarajah B. J., Khokhlatchev A., Cobb M. H., Goldsmith E. J. Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell. 1997 Sep 5;90(5):859–869. doi: 10.1016/s0092-8674(00)80351-7. [DOI] [PubMed] [Google Scholar]
  6. Cordon-Cardo C., Tapley P., Jing S. Q., Nanduri V., O'Rourke E., Lamballe F., Kovary K., Klein R., Jones K. R., Reichardt L. F. The trk tyrosine protein kinase mediates the mitogenic properties of nerve growth factor and neurotrophin-3. Cell. 1991 Jul 12;66(1):173–183. doi: 10.1016/0092-8674(91)90149-s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cowley S., Paterson H., Kemp P., Marshall C. J. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell. 1994 Jun 17;77(6):841–852. doi: 10.1016/0092-8674(94)90133-3. [DOI] [PubMed] [Google Scholar]
  8. Cunningham M. E., Stephens R. M., Kaplan D. R., Greene L. A. Autophosphorylation of activation loop tyrosines regulates signaling by the TRK nerve growth factor receptor. J Biol Chem. 1997 Apr 18;272(16):10957–10967. doi: 10.1074/jbc.272.16.10957. [DOI] [PubMed] [Google Scholar]
  9. Evans S. V. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J Mol Graph. 1993 Jun;11(2):134-8, 127-8. doi: 10.1016/0263-7855(93)87009-t. [DOI] [PubMed] [Google Scholar]
  10. Green S. H., Rydel R. E., Connolly J. L., Greene L. A. PC12 cell mutants that possess low- but not high-affinity nerve growth factor receptors neither respond to nor internalize nerve growth factor. J Cell Biol. 1986 Mar;102(3):830–843. doi: 10.1083/jcb.102.3.830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Greene L. A., Tischler A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2424–2428. doi: 10.1073/pnas.73.7.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hanks S. K., Quinn A. M., Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988 Jul 1;241(4861):42–52. doi: 10.1126/science.3291115. [DOI] [PubMed] [Google Scholar]
  13. Hanks S. K., Quinn A. M. Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol. 1991;200:38–62. doi: 10.1016/0076-6879(91)00126-h. [DOI] [PubMed] [Google Scholar]
  14. Hernández-Sánchez C., Blakesley V., Kalebic T., Helman L., LeRoith D. The role of the tyrosine kinase domain of the insulin-like growth factor-I receptor in intracellular signaling, cellular proliferation, and tumorigenesis. J Biol Chem. 1995 Dec 8;270(49):29176–29181. doi: 10.1074/jbc.270.49.29176. [DOI] [PubMed] [Google Scholar]
  15. Herrera R., Rosen O. M. Autophosphorylation of the insulin receptor in vitro. Designation of phosphorylation sites and correlation with receptor kinase activation. J Biol Chem. 1986 Sep 15;261(26):11980–11985. [PubMed] [Google Scholar]
  16. Hubbard S. R. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 1997 Sep 15;16(18):5572–5581. doi: 10.1093/emboj/16.18.5572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hubbard S. R., Wei L., Ellis L., Hendrickson W. A. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature. 1994 Dec 22;372(6508):746–754. doi: 10.1038/372746a0. [DOI] [PubMed] [Google Scholar]
  18. Hudspeth A. J., Gillespie P. G. Pulling springs to tune transduction: adaptation by hair cells. Neuron. 1994 Jan;12(1):1–9. doi: 10.1016/0896-6273(94)90147-3. [DOI] [PubMed] [Google Scholar]
  19. Johnson L. N., Noble M. E., Owen D. J. Active and inactive protein kinases: structural basis for regulation. Cell. 1996 Apr 19;85(2):149–158. doi: 10.1016/s0092-8674(00)81092-2. [DOI] [PubMed] [Google Scholar]
  20. Kaliman P., Baron V., Alengrin F., Takata Y., Webster N. J., Olefsky J. M., Van Obberghen E. The insulin receptor C-terminus is involved in regulation of the receptor kinase activity. Biochemistry. 1993 Sep 21;32(37):9539–9544. doi: 10.1021/bi00088a004. [DOI] [PubMed] [Google Scholar]
  21. Kishimoto M., Hashiramoto M., Yonezawa K., Shii K., Kazumi T., Kasuga M. Substitution of glutamine for arginine 1131. A newly identified mutation in the catalytic loop of the tyrosine kinase domain of the human insulin receptor. J Biol Chem. 1994 Apr 15;269(15):11349–11355. [PubMed] [Google Scholar]
  22. Li S., Ferber A., Miura M., Baserga R. Mitogenicity and transforming activity of the insulin-like growth factor-I receptor with mutations in the tyrosine kinase domain. J Biol Chem. 1994 Dec 23;269(51):32558–32564. [PubMed] [Google Scholar]
  23. Loeb D. M., Greene L. A. Transfection with trk restores "slow" NGF binding, efficient NGF uptake, and multiple NGF responses to NGF-nonresponsive PC12 cell mutants. J Neurosci. 1993 Jul;13(7):2919–2929. doi: 10.1523/JNEUROSCI.13-07-02919.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Loeb D. M., Maragos J., Martin-Zanca D., Chao M. V., Parada L. F., Greene L. A. The trk proto-oncogene rescues NGF responsiveness in mutant NGF-nonresponsive PC12 cell lines. Cell. 1991 Sep 6;66(5):961–966. doi: 10.1016/0092-8674(91)90441-z. [DOI] [PubMed] [Google Scholar]
  25. Loeb D. M., Stephens R. M., Copeland T., Kaplan D. R., Greene L. A. A Trk nerve growth factor (NGF) receptor point mutation affecting interaction with phospholipase C-gamma 1 abolishes NGF-promoted peripherin induction but not neurite outgrowth. J Biol Chem. 1994 Mar 25;269(12):8901–8910. [PubMed] [Google Scholar]
  26. Loeb D. M., Tsao H., Cobb M. H., Greene L. A. NGF and other growth factors induce an association between ERK1 and the NGF receptor, gp140prototrk. Neuron. 1992 Dec;9(6):1053–1065. doi: 10.1016/0896-6273(92)90065-l. [DOI] [PubMed] [Google Scholar]
  27. Longati P., Bardelli A., Ponzetto C., Naldini L., Comoglio P. M. Tyrosines1234-1235 are critical for activation of the tyrosine kinase encoded by the MET proto-oncogene (HGF receptor). Oncogene. 1994 Jan;9(1):49–57. [PubMed] [Google Scholar]
  28. Martin-Zanca D., Hughes S. H., Barbacid M. A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. 1986 Feb 27-Mar 5Nature. 319(6056):743–748. doi: 10.1038/319743a0. [DOI] [PubMed] [Google Scholar]
  29. McCarty J. H., Feinstein S. C. Activation loop tyrosines contribute varying roles to TrkB autophosphorylation and signal transduction. Oncogene. 1998 Apr 2;16(13):1691–1700. doi: 10.1038/sj.onc.1201688. [DOI] [PubMed] [Google Scholar]
  30. McDonald N. Q., Murray-Rust J., Blundell T. L. The first structure of a receptor tyrosine kinase domain: a further step in understanding the molecular basis of insulin action. Structure. 1995 Jan 15;3(1):1–6. doi: 10.1016/S0969-2126(01)00129-0. [DOI] [PubMed] [Google Scholar]
  31. Mohammadi M., Schlessinger J., Hubbard S. R. Structure of the FGF receptor tyrosine kinase domain reveals a novel autoinhibitory mechanism. Cell. 1996 Aug 23;86(4):577–587. doi: 10.1016/s0092-8674(00)80131-2. [DOI] [PubMed] [Google Scholar]
  32. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  33. Pear W. S., Nolan G. P., Scott M. L., Baltimore D. Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8392–8396. doi: 10.1073/pnas.90.18.8392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Petruzziello A., Formisano P., Miele C., Di Finizio B., Riccardi G., Ferrara A., Beguinot L., Beguinot F. Defective insulin action in fibroblasts from noninsulin-dependent diabetes mellitus patients with Gln1152 insulin receptor mutation. J Clin Endocrinol Metab. 1993 Aug;77(2):409–412. doi: 10.1210/jcem.77.2.8393885. [DOI] [PubMed] [Google Scholar]
  35. Romeo G., Ronchetto P., Luo Y., Barone V., Seri M., Ceccherini I., Pasini B., Bocciardi R., Lerone M., Käriäinen H. Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung's disease. Nature. 1994 Jan 27;367(6461):377–378. doi: 10.1038/367377a0. [DOI] [PubMed] [Google Scholar]
  36. Rosen O. M., Herrera R., Olowe Y., Petruzzelli L. M., Cobb M. H. Phosphorylation activates the insulin receptor tyrosine protein kinase. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3237–3240. doi: 10.1073/pnas.80.11.3237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schlessinger J., Ullrich A. Growth factor signaling by receptor tyrosine kinases. Neuron. 1992 Sep;9(3):383–391. doi: 10.1016/0896-6273(92)90177-f. [DOI] [PubMed] [Google Scholar]
  38. Schuchardt A., D'Agati V., Larsson-Blomberg L., Costantini F., Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 1994 Jan 27;367(6461):380–383. doi: 10.1038/367380a0. [DOI] [PubMed] [Google Scholar]
  39. Segal R. A., Bhattacharyya A., Rua L. A., Alberta J. A., Stephens R. M., Kaplan D. R., Stiles C. D. Differential utilization of Trk autophosphorylation sites. J Biol Chem. 1996 Aug 16;271(33):20175–20181. doi: 10.1074/jbc.271.33.20175. [DOI] [PubMed] [Google Scholar]
  40. Shimotake T., Iwai N., Inoue K., Kimura T., Ichikawa D., Abe T., Inazawa J. Germline mutation of the RET proto-oncogene in children with total intestinal aganglionosis. J Pediatr Surg. 1997 Mar;32(3):498–500. doi: 10.1016/s0022-3468(97)90615-1. [DOI] [PubMed] [Google Scholar]
  41. Tornqvist H. E., Avruch J. Relationship of site-specific beta subunit tyrosine autophosphorylation to insulin activation of the insulin receptor (tyrosine) protein kinase activity. J Biol Chem. 1988 Apr 5;263(10):4593–4601. [PubMed] [Google Scholar]
  42. Ullrich A., Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990 Apr 20;61(2):203–212. doi: 10.1016/0092-8674(90)90801-k. [DOI] [PubMed] [Google Scholar]
  43. Van Obberghen E., Baron V., Scimeca J. C., Kaliman P. Insulin receptor: receptor activation and signal transduction. Adv Second Messenger Phosphoprotein Res. 1993;28:195–201. [PubMed] [Google Scholar]
  44. White M. F., Shoelson S. E., Keutmann H., Kahn C. R. A cascade of tyrosine autophosphorylation in the beta-subunit activates the phosphotransferase of the insulin receptor. J Biol Chem. 1988 Feb 25;263(6):2969–2980. [PubMed] [Google Scholar]
  45. Yamaguchi H., Hendrickson W. A. Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation. Nature. 1996 Dec 5;384(6608):484–489. doi: 10.1038/384484a0. [DOI] [PubMed] [Google Scholar]
  46. Zheng J., Trafny E. A., Knighton D. R., Xuong N. H., Taylor S. S., Ten Eyck L. F., Sowadski J. M. 2.2 A refined crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MnATP and a peptide inhibitor. Acta Crystallogr D Biol Crystallogr. 1993 May 1;49(Pt 3):362–365. doi: 10.1107/S0907444993000423. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES