Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Dec 15;17(24):7311–7319. doi: 10.1093/emboj/17.24.7311

Targeted disruption of SHIP leads to Steel factor-induced degranulation of mast cells.

M Huber 1, C D Helgason 1, M P Scheid 1, V Duronio 1, R K Humphries 1, G Krystal 1
PMCID: PMC1171077  PMID: 9857188

Abstract

To investigate the role of the src homology 2 (SH2)-containing inositol 5' phosphatase (SHIP) in growth factor-mediated signalling, we compared Steel factor (SF)-induced events in bone marrow-derived mast cells (BMMCs) from SHIP-/- and SHIP+/+ littermates. We found SF alone stimulated massive degranulation from SHIP-/- but none from SHIP+/+ BMMCs. This SF-induced degranulation, which was not due to higher c-kit levels in SHIP-/- cells, correlated with higher intracellular calcium than that in SHIP+/+ cells and was dependent on the influx of extracellular calcium. Both this influx and subsequent degranulation were completely inhibited by PI-3-kinase inhibitors, indicating that SF-induced activation of PI-3-kinase was upstream of extracellular calcium entry. A comparison of phosphatidylinositol-3,4,5-trisphosphate (PIP3) levels following SF stimulation of SHIP+/+ and SHIP-/- BMMCs suggested that SHIP restricted this entry by hydrolyzing PIP3. Although PI-3-kinase inhibitors blocked the release of intracellular calcium, implicating PIP3, and PLCgamma-2 was slightly more tyrosine phosphorylated in SHIP-/- cells, the increase in inositol-1,4,5-trisphosphate (IP3) and intracellular calcium levels were identical in SHIP-/- and SHIP+/+ BMMCs. These results suggest that SHIP prevents SF from triggering degranulation of normal BMMCs, and does so by hydrolyzing PIP3, which in turn limits extracellular calcium entry at a step after the release of intracellular calcium.

Full Text

The Full Text of this article is available as a PDF (497.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barker S. A., Caldwell K. K., Pfeiffer J. R., Wilson B. S. Wortmannin-sensitive phosphorylation, translocation, and activation of PLCgamma1, but not PLCgamma2, in antigen-stimulated RBL-2H3 mast cells. Mol Biol Cell. 1998 Feb;9(2):483–496. doi: 10.1091/mbc.9.2.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beaven M. A. Calcium signalling: sphingosine kinase versus phospholipase C? Curr Biol. 1996 Jul 1;6(7):798–801. doi: 10.1016/s0960-9822(02)00598-5. [DOI] [PubMed] [Google Scholar]
  3. Beaven M. A., Cunha-Melo J. R. Membrane phosphoinositide-activated signals in mast cells and basophils. Prog Allergy. 1988;42:123–184. [PubMed] [Google Scholar]
  4. Bolland S., Pearse R. N., Kurosaki T., Ravetch J. V. SHIP modulates immune receptor responses by regulating membrane association of Btk. Immunity. 1998 Apr;8(4):509–516. doi: 10.1016/s1074-7613(00)80555-5. [DOI] [PubMed] [Google Scholar]
  5. Choi O. H., Kim J. H., Kinet J. P. Calcium mobilization via sphingosine kinase in signalling by the Fc epsilon RI antigen receptor. Nature. 1996 Apr 18;380(6575):634–636. doi: 10.1038/380634a0. [DOI] [PubMed] [Google Scholar]
  6. Damen J. E., Liu L., Rosten P., Humphries R. K., Jefferson A. B., Majerus P. W., Krystal G. The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-triphosphate 5-phosphatase. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1689–1693. doi: 10.1073/pnas.93.4.1689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Falasca M., Logan S. K., Lehto V. P., Baccante G., Lemmon M. A., Schlessinger J. Activation of phospholipase C gamma by PI 3-kinase-induced PH domain-mediated membrane targeting. EMBO J. 1998 Jan 15;17(2):414–422. doi: 10.1093/emboj/17.2.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fluckiger A. C., Li Z., Kato R. M., Wahl M. I., Ochs H. D., Longnecker R., Kinet J. P., Witte O. N., Scharenberg A. M., Rawlings D. J. Btk/Tec kinases regulate sustained increases in intracellular Ca2+ following B-cell receptor activation. EMBO J. 1998 Apr 1;17(7):1973–1985. doi: 10.1093/emboj/17.7.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Habib T., Hejna J. A., Moses R. E., Decker S. J. Growth factors and insulin stimulate tyrosine phosphorylation of the 51C/SHIP2 protein. J Biol Chem. 1998 Jul 17;273(29):18605–18609. doi: 10.1074/jbc.273.29.18605. [DOI] [PubMed] [Google Scholar]
  10. Hata D., Kawakami Y., Inagaki N., Lantz C. S., Kitamura T., Khan W. N., Maeda-Yamamoto M., Miura T., Han W., Hartman S. E. Involvement of Bruton's tyrosine kinase in FcepsilonRI-dependent mast cell degranulation and cytokine production. J Exp Med. 1998 Apr 20;187(8):1235–1247. doi: 10.1084/jem.187.8.1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Helgason C. D., Damen J. E., Rosten P., Grewal R., Sorensen P., Chappel S. M., Borowski A., Jirik F., Krystal G., Humphries R. K. Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev. 1998 Jun 1;12(11):1610–1620. doi: 10.1101/gad.12.11.1610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kavanaugh W. M., Pot D. A., Chin S. M., Deuter-Reinhard M., Jefferson A. B., Norris F. A., Masiarz F. R., Cousens L. S., Majerus P. W., Williams L. T. Multiple forms of an inositol polyphosphate 5-phosphatase form signaling complexes with Shc and Grb2. Curr Biol. 1996 Apr 1;6(4):438–445. doi: 10.1016/s0960-9822(02)00511-0. [DOI] [PubMed] [Google Scholar]
  13. Kawakami Y., Yao L., Miura T., Tsukada S., Witte O. N., Kawakami T. Tyrosine phosphorylation and activation of Bruton tyrosine kinase upon Fc epsilon RI cross-linking. Mol Cell Biol. 1994 Aug;14(8):5108–5113. doi: 10.1128/mcb.14.8.5108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lev S., Givol D., Yarden Y. Interkinase domain of kit contains the binding site for phosphatidylinositol 3' kinase. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):678–682. doi: 10.1073/pnas.89.2.678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lioubin M. N., Algate P. A., Tsai S., Carlberg K., Aebersold A., Rohrschneider L. R. p150Ship, a signal transduction molecule with inositol polyphosphate-5-phosphatase activity. Genes Dev. 1996 May 1;10(9):1084–1095. doi: 10.1101/gad.10.9.1084. [DOI] [PubMed] [Google Scholar]
  16. Liu L., Damen J. E., Cutler R. L., Krystal G. Multiple cytokines stimulate the binding of a common 145-kilodalton protein to Shc at the Grb2 recognition site of Shc. Mol Cell Biol. 1994 Oct;14(10):6926–6935. doi: 10.1128/mcb.14.10.6926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Liu L., Damen J. E., Hughes M. R., Babic I., Jirik F. R., Krystal G. The Src homology 2 (SH2) domain of SH2-containing inositol phosphatase (SHIP) is essential for tyrosine phosphorylation of SHIP, its association with Shc, and its induction of apoptosis. J Biol Chem. 1997 Apr 4;272(14):8983–8988. doi: 10.1074/jbc.272.14.8983. [DOI] [PubMed] [Google Scholar]
  18. Liu L., Damen J. E., Ware M., Hughes M., Krystal G. SHIP, a new player in cytokine-induced signalling. Leukemia. 1997 Feb;11(2):181–184. doi: 10.1038/sj.leu.2400559. [DOI] [PubMed] [Google Scholar]
  19. Liu Q., Shalaby F., Jones J., Bouchard D., Dumont D. J. The SH2-containing inositol polyphosphate 5-phosphatase, ship, is expressed during hematopoiesis and spermatogenesis. Blood. 1998 Apr 15;91(8):2753–2759. [PubMed] [Google Scholar]
  20. Meyer zu Heringdorf D., Lass H., Alemany R., Laser K. T., Neumann E., Zhang C., Schmidt M., Rauen U., Jakobs K. H., van Koppen C. J. Sphingosine kinase-mediated Ca2+ signalling by G-protein-coupled receptors. EMBO J. 1998 May 15;17(10):2830–2837. doi: 10.1093/emboj/17.10.2830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nishizumi H., Yamamoto T. Impaired tyrosine phosphorylation and Ca2+ mobilization, but not degranulation, in lyn-deficient bone marrow-derived mast cells. J Immunol. 1997 Mar 1;158(5):2350–2355. [PubMed] [Google Scholar]
  22. Ono M., Bolland S., Tempst P., Ravetch J. V. Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor Fc(gamma)RIIB. Nature. 1996 Sep 19;383(6597):263–266. doi: 10.1038/383263a0. [DOI] [PubMed] [Google Scholar]
  23. Ono M., Okada H., Bolland S., Yanagi S., Kurosaki T., Ravetch J. V. Deletion of SHIP or SHP-1 reveals two distinct pathways for inhibitory signaling. Cell. 1997 Jul 25;90(2):293–301. doi: 10.1016/s0092-8674(00)80337-2. [DOI] [PubMed] [Google Scholar]
  24. Ortega E., Hazan B., Zor U., Pecht I. Mast cell stimulation by monoclonal antibodies specific for the Fc epsilon receptor yields distinct responses of arachidonic acid and leukotriene C4 secretion. Eur J Immunol. 1989 Dec;19(12):2251–2256. doi: 10.1002/eji.1830191211. [DOI] [PubMed] [Google Scholar]
  25. Pesesse X., Deleu S., De Smedt F., Drayer L., Erneux C. Identification of a second SH2-domain-containing protein closely related to the phosphatidylinositol polyphosphate 5-phosphatase SHIP. Biochem Biophys Res Commun. 1997 Oct 29;239(3):697–700. doi: 10.1006/bbrc.1997.7538. [DOI] [PubMed] [Google Scholar]
  26. Rameh L. E., Chen C. S., Cantley L. C. Phosphatidylinositol (3,4,5)P3 interacts with SH2 domains and modulates PI 3-kinase association with tyrosine-phosphorylated proteins. Cell. 1995 Dec 1;83(5):821–830. doi: 10.1016/0092-8674(95)90195-7. [DOI] [PubMed] [Google Scholar]
  27. Rawlings D. J., Scharenberg A. M., Park H., Wahl M. I., Lin S., Kato R. M., Fluckiger A. C., Witte O. N., Kinet J. P. Activation of BTK by a phosphorylation mechanism initiated by SRC family kinases. Science. 1996 Feb 9;271(5250):822–825. doi: 10.1126/science.271.5250.822. [DOI] [PubMed] [Google Scholar]
  28. Rigley K. P., Harnett M. M., Phillips R. J., Klaus G. G. Analysis of signaling via surface immunoglobulin receptors on B cells from CBA/N mice. Eur J Immunol. 1989 Nov;19(11):2081–2086. doi: 10.1002/eji.1830191117. [DOI] [PubMed] [Google Scholar]
  29. Scharenberg A. M., El-Hillal O., Fruman D. A., Beitz L. O., Li Z., Lin S., Gout I., Cantley L. C., Rawlings D. J., Kinet J. P. Phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3)/Tec kinase-dependent calcium signaling pathway: a target for SHIP-mediated inhibitory signals. EMBO J. 1998 Apr 1;17(7):1961–1972. doi: 10.1093/emboj/17.7.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Scheid M. P., Duronio V. Phosphatidylinositol 3-OH kinase activity is not required for activation of mitogen-activated protein kinase by cytokines. J Biol Chem. 1996 Jul 26;271(30):18134–18139. doi: 10.1074/jbc.271.30.18134. [DOI] [PubMed] [Google Scholar]
  31. Serve H., Hsu Y. C., Besmer P. Tyrosine residue 719 of the c-kit receptor is essential for binding of the P85 subunit of phosphatidylinositol (PI) 3-kinase and for c-kit-associated PI 3-kinase activity in COS-1 cells. J Biol Chem. 1994 Feb 25;269(8):6026–6030. [PubMed] [Google Scholar]
  32. Vosseller K., Stella G., Yee N. S., Besmer P. c-kit receptor signaling through its phosphatidylinositide-3'-kinase-binding site and protein kinase C: role in mast cell enhancement of degranulation, adhesion, and membrane ruffling. Mol Biol Cell. 1997 May;8(5):909–922. doi: 10.1091/mbc.8.5.909. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES