Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Dec 15;17(24):7404–7415. doi: 10.1093/emboj/17.24.7404

The structure of plasmid-encoded transcriptional repressor CopG unliganded and bound to its operator.

F X Gomis-Rüth 1, M Solá 1, P Acebo 1, A Párraga 1, A Guasch 1, R Eritja 1, A González 1, M Espinosa 1, G del Solar 1, M Coll 1
PMCID: PMC1171085  PMID: 9857196

Abstract

The structure of the 45 amino acid transcriptional repressor, CopG, has been solved unliganded and bound to its target operator DNA. The protein, encoded by the promiscuous streptococcal plasmid pMV158, is involved in the control of plasmid copy number. The structure of this protein repressor, which is the shortest reported to date and the first isolated from a plasmid, has a homodimeric ribbon-helix-helix arrangement. It is the prototype for a family of homologous plasmid repressors. CopG cooperatively associates, completely protecting several turns on one face of the double helix in both directions from a 13-bp pseudosymmetric primary DNA recognition element. In the complex structure, one protein tetramer binds at one face of a 19-bp oligonucleotide, containing the pseudosymmetric element, with two beta-ribbons inserted into the major groove. The DNA is bent 60 degrees by compression of both major and minor grooves. The protein dimer displays topological similarity to Arc and MetJ repressors. Nevertheless, the functional tetramer has a unique structure with the two vicinal recognition ribbon elements at a short distance, thus inducing strong DNA bend. Further structural resemblance is found with helix-turn-helix regions of unrelated DNA-binding proteins. In contrast to these, however, the bihelical region of CopG has a role in oligomerization instead of DNA recognition. This observation unveils an evolutionary link between ribbon-helix-helix and helix-turn-helix proteins.

Full Text

The Full Text of this article is available as a PDF (950.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aggarwal A. K., Rodgers D. W., Drottar M., Ptashne M., Harrison S. C. Recognition of a DNA operator by the repressor of phage 434: a view at high resolution. Science. 1988 Nov 11;242(4880):899–907. doi: 10.1126/science.3187531. [DOI] [PubMed] [Google Scholar]
  2. Anderson W. F., Ohlendorf D. H., Takeda Y., Matthews B. W. Structure of the cro repressor from bacteriophage lambda and its interaction with DNA. Nature. 1981 Apr 30;290(5809):754–758. doi: 10.1038/290754a0. [DOI] [PubMed] [Google Scholar]
  3. Baikalov I., Schröder I., Kaczor-Grzeskowiak M., Grzeskowiak K., Gunsalus R. P., Dickerson R. E. Structure of the Escherichia coli response regulator NarL. Biochemistry. 1996 Aug 27;35(34):11053–11061. doi: 10.1021/bi960919o. [DOI] [PubMed] [Google Scholar]
  4. Becker S., Groner B., Müller C. W. Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature. 1998 Jul 9;394(6689):145–151. doi: 10.1038/28101. [DOI] [PubMed] [Google Scholar]
  5. Breg J. N., van Opheusden J. H., Burgering M. J., Boelens R., Kaptein R. Structure of Arc repressor in solution: evidence for a family of beta-sheet DNA-binding proteins. Nature. 1990 Aug 9;346(6284):586–589. doi: 10.1038/346586a0. [DOI] [PubMed] [Google Scholar]
  6. Burgering M. J., Boelens R., Gilbert D. E., Breg J. N., Knight K. L., Sauer R. T., Kaptein R. Solution structure of dimeric Mnt repressor (1-76). Biochemistry. 1994 Dec 20;33(50):15036–15045. doi: 10.1021/bi00254a012. [DOI] [PubMed] [Google Scholar]
  7. Cowtan K. D., Main P. Phase combination and cross validation in iterated density-modification calculations. Acta Crystallogr D Biol Crystallogr. 1996 Jan 1;52(Pt 1):43–48. doi: 10.1107/S090744499500761X. [DOI] [PubMed] [Google Scholar]
  8. Ferré-D'Amaré A. R., Prendergast G. C., Ziff E. B., Burley S. K. Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature. 1993 May 6;363(6424):38–45. doi: 10.1038/363038a0. [DOI] [PubMed] [Google Scholar]
  9. Gomis-Rüth F. X., Solà M., Pérez-Luque R., Acebo P., Alda M. T., González A., Espinosa M., del Solar G., Coll M. Overexpression, purification, crystallization and preliminary X-ray diffraction analysis of the pMV158-encoded plasmid transcriptional repressor protein CopG. FEBS Lett. 1998 Mar 20;425(1):161–165. doi: 10.1016/s0014-5793(98)00219-1. [DOI] [PubMed] [Google Scholar]
  10. Harrison S. C., Aggarwal A. K. DNA recognition by proteins with the helix-turn-helix motif. Annu Rev Biochem. 1990;59:933–969. doi: 10.1146/annurev.bi.59.070190.004441. [DOI] [PubMed] [Google Scholar]
  11. Holm L., Sander C. Dali: a network tool for protein structure comparison. Trends Biochem Sci. 1995 Nov;20(11):478–480. doi: 10.1016/s0968-0004(00)89105-7. [DOI] [PubMed] [Google Scholar]
  12. Inamoto S., Ohtsubo E. Specific binding of the TraY protein to oriT and the promoter region for the traY gene of plasmid R100. J Biol Chem. 1990 Apr 15;265(11):6461–6466. [PubMed] [Google Scholar]
  13. Klemm J. D., Rould M. A., Aurora R., Herr W., Pabo C. O. Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules. Cell. 1994 Apr 8;77(1):21–32. doi: 10.1016/0092-8674(94)90231-3. [DOI] [PubMed] [Google Scholar]
  14. Knight K. L., Sauer R. T. DNA binding specificity of the Arc and Mnt repressors is determined by a short region of N-terminal residues. Proc Natl Acad Sci U S A. 1989 Feb;86(3):797–801. doi: 10.1073/pnas.86.3.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  16. Lavery R., Sklenar H. The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. J Biomol Struct Dyn. 1988 Aug;6(1):63–91. doi: 10.1080/07391102.1988.10506483. [DOI] [PubMed] [Google Scholar]
  17. Li T., Stark M. R., Johnson A. D., Wolberger C. Crystal structure of the MATa1/MAT alpha 2 homeodomain heterodimer bound to DNA. Science. 1995 Oct 13;270(5234):262–269. doi: 10.1126/science.270.5234.262. [DOI] [PubMed] [Google Scholar]
  18. McKay D. B., Steitz T. A. Structure of catabolite gene activator protein at 2.9 A resolution suggests binding to left-handed B-DNA. Nature. 1981 Apr 30;290(5809):744–749. doi: 10.1038/290744a0. [DOI] [PubMed] [Google Scholar]
  19. Moncalián G., Grandoso G., Llosa M., de la Cruz F. oriT-processing and regulatory roles of TrwA protein in plasmid R388 conjugation. J Mol Biol. 1997 Jul 11;270(2):188–200. doi: 10.1006/jmbi.1997.1082. [DOI] [PubMed] [Google Scholar]
  20. Nelson W. C., Matson S. W. The F plasmid traY gene product binds DNA as a monomer or a dimer: structural and functional implications. Mol Microbiol. 1996 Jun;20(6):1179–1187. doi: 10.1111/j.1365-2958.1996.tb02638.x. [DOI] [PubMed] [Google Scholar]
  21. Nordström K., Austin S. J. Mechanisms that contribute to the stable segregation of plasmids. Annu Rev Genet. 1989;23:37–69. doi: 10.1146/annurev.ge.23.120189.000345. [DOI] [PubMed] [Google Scholar]
  22. Nordström K. Control of plasmid replication: a synthesis occasioned by the recent EMBO Workshop "Replication of Prokaryotic DNA," held at de Eemhof, The Netherlands, May 1982 (organizers: Veltkamp and Weisbeek). Plasmid. 1983 Jan;9(1):1–7. doi: 10.1016/0147-619x(83)90026-4. [DOI] [PubMed] [Google Scholar]
  23. Novick R. P. Plasmid incompatibility. Microbiol Rev. 1987 Dec;51(4):381–395. doi: 10.1128/mr.51.4.381-395.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ohlendorf D. H., Anderson W. F., Fisher R. G., Takeda Y., Matthews B. W. The molecular basis of DNA-protein recognition inferred from the structure of cro repressor. Nature. 1982 Aug 19;298(5876):718–723. doi: 10.1038/298718a0. [DOI] [PubMed] [Google Scholar]
  25. Pabo C. O., Lewis M. The operator-binding domain of lambda repressor: structure and DNA recognition. Nature. 1982 Jul 29;298(5873):443–447. doi: 10.1038/298443a0. [DOI] [PubMed] [Google Scholar]
  26. Pabo C. O., Sauer R. T. Protein-DNA recognition. Annu Rev Biochem. 1984;53:293–321. doi: 10.1146/annurev.bi.53.070184.001453. [DOI] [PubMed] [Google Scholar]
  27. Phillips S. E., Manfield I., Parsons I., Davidson B. E., Rafferty J. B., Somers W. S., Margarita D., Cohen G. N., Saint-Girons I., Stockley P. G. Cooperative tandem binding of met repressor of Escherichia coli. Nature. 1989 Oct 26;341(6244):711–715. doi: 10.1038/341711a0. [DOI] [PubMed] [Google Scholar]
  28. Pérez-Martín J., del Solar G. H., Lurz R., de la Campa A. G., Dobrinski B., Espinosa M. Induced bending of plasmid pLS1 DNA by the plasmid-encoded protein RepA. J Biol Chem. 1989 Dec 15;264(35):21334–21339. [PubMed] [Google Scholar]
  29. Rafferty J. B., Somers W. S., Saint-Girons I., Phillips S. E. Three-dimensional crystal structures of Escherichia coli met repressor with and without corepressor. Nature. 1989 Oct 26;341(6244):705–710. doi: 10.1038/341705a0. [DOI] [PubMed] [Google Scholar]
  30. Raumann B. E., Rould M. A., Pabo C. O., Sauer R. T. DNA recognition by beta-sheets in the Arc repressor-operator crystal structure. Nature. 1994 Feb 24;367(6465):754–757. doi: 10.1038/367754a0. [DOI] [PubMed] [Google Scholar]
  31. Schildbach J. F., Milla M. E., Jeffrey P. D., Raumann B. E., Sauer R. T. Crystal structure, folding, and operator binding of the hyperstable Arc repressor mutant PL8. Biochemistry. 1995 Jan 31;34(4):1405–1412. doi: 10.1021/bi00004a035. [DOI] [PubMed] [Google Scholar]
  32. Schultz S. C., Shields G. C., Steitz T. A. Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees. Science. 1991 Aug 30;253(5023):1001–1007. doi: 10.1126/science.1653449. [DOI] [PubMed] [Google Scholar]
  33. Somers W. S., Phillips S. E. Crystal structure of the met repressor-operator complex at 2.8 A resolution reveals DNA recognition by beta-strands. Nature. 1992 Oct 1;359(6394):387–393. doi: 10.1038/359387a0. [DOI] [PubMed] [Google Scholar]
  34. Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph. 1990 Mar;8(1):52-6, 29. doi: 10.1016/0263-7855(90)80070-v. [DOI] [PubMed] [Google Scholar]
  35. Wild C. M., McNally T., Phillips S. E., Stockley P. G. Effects of systematic variation of the minimal Escherichia coli met consensus operator site: in vivo and in vitro met repressor binding. Mol Microbiol. 1996 Sep;21(6):1125–1135. doi: 10.1046/j.1365-2958.1996.00055.x. [DOI] [PubMed] [Google Scholar]
  36. Wilson D. S., Guenther B., Desplan C., Kuriyan J. High resolution crystal structure of a paired (Pax) class cooperative homeodomain dimer on DNA. Cell. 1995 Sep 8;82(5):709–719. doi: 10.1016/0092-8674(95)90468-9. [DOI] [PubMed] [Google Scholar]
  37. Wolberger C., Dong Y. C., Ptashne M., Harrison S. C. Structure of a phage 434 Cro/DNA complex. Nature. 1988 Oct 27;335(6193):789–795. doi: 10.1038/335789a0. [DOI] [PubMed] [Google Scholar]
  38. del Solar G. H., Pérez-Martín J., Espinosa M. Plasmid pLS1-encoded RepA protein regulates transcription from repAB promoter by binding to a DNA sequence containing a 13-base pair symmetric element. J Biol Chem. 1990 Jul 25;265(21):12569–12575. [PubMed] [Google Scholar]
  39. del Solar G. H., de al Campa A. G., Pérez-Martín J., Choli T., Espinosa M. Purification and characterization of RepA, a protein involved in the copy number control of plasmid pLS1. Nucleic Acids Res. 1989 Apr 11;17(7):2405–2420. doi: 10.1093/nar/17.7.2405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. del Solar G., Acebo P., Espinosa M. Replication control of plasmid pLS1: efficient regulation of plasmid copy number is exerted by the combined action of two plasmid components, CopG and RNA II. Mol Microbiol. 1995 Dec;18(5):913–924. doi: 10.1111/j.1365-2958.1995.18050913.x. [DOI] [PubMed] [Google Scholar]
  41. del Solar G., Espinosa M. The copy number of plasmid pLS1 is regulated by two trans-acting plasmid products: the antisense RNA II and the repressor protein, RepA. Mol Microbiol. 1992 Jan;6(1):83–94. doi: 10.1111/j.1365-2958.1992.tb00840.x. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES