Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Jan 4;18(1):37–48. doi: 10.1093/emboj/18.1.37

The vasodilator-stimulated phosphoprotein (VASP) is involved in cGMP- and cAMP-mediated inhibition of agonist-induced platelet aggregation, but is dispensable for smooth muscle function.

A Aszódi 1, A Pfeifer 1, M Ahmad 1, M Glauner 1, X H Zhou 1, L Ny 1, K E Andersson 1, B Kehrel 1, S Offermanns 1, R Fässler 1
PMCID: PMC1171100  PMID: 9878048

Abstract

The vasodilator-stimulated phosphoprotein (VASP) is associated with actin filaments and focal adhesions, which form the interface between the cytoskeleton and the extracellular matrix. VASP is phosphorylated by both the cAMP- and cGMP-dependent protein kinases in a variety of cells, including platelets and smooth muscle cells. Since both the cAMP and cGMP signalling cascades relax smooth muscle and inhibit platelet activation, it was speculated that VASP mediates these effects by modulating actin filament dynamics and integrin activation. To study the physiological relevance of VASP in these processes, we inactivated the VASP gene in mice. Adult VASP-deficient mice had normal agonist-induced contraction, and normal cAMP- and cGMP-dependent relaxation of intestinal and vascular smooth muscle. In contrast, cAMP- and cGMP-mediated inhibition of platelet aggregation was significantly reduced in the absence of VASP. Other cAMP- and cGMP-dependent effects in platelets, such as inhibition of agonist-induced increases in cytosolic calcium concentrations and granule secretion, were not dependent on the presence of VASP. Our data show that two different cyclic, nucleotide-dependent mechanisms are operating during platelet activation: a VASP-independent mechanism for inhibition of calcium mobilization and granule release and a VASP-dependent mechanism for inhibition of platelet aggregation which may involve regulation of integrin function.

Full Text

The Full Text of this article is available as a PDF (608.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahern-Djamali S. M., Comer A. R., Bachmann C., Kastenmeier A. S., Reddy S. K., Beckerle M. C., Walter U., Hoffmann F. M. Mutations in Drosophila enabled and rescue by human vasodilator-stimulated phosphoprotein (VASP) indicate important functional roles for Ena/VASP homology domain 1 (EVH1) and EVH2 domains. Mol Biol Cell. 1998 Aug;9(8):2157–2171. doi: 10.1091/mbc.9.8.2157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brindle N. P., Holt M. R., Davies J. E., Price C. J., Critchley D. R. The focal-adhesion vasodilator-stimulated phosphoprotein (VASP) binds to the proline-rich domain in vinculin. Biochem J. 1996 Sep 15;318(Pt 3):753–757. doi: 10.1042/bj3180753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burridge K., Chrzanowska-Wodnicka M. Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol. 1996;12:463–518. doi: 10.1146/annurev.cellbio.12.1.463. [DOI] [PubMed] [Google Scholar]
  4. Chakraborty T., Ebel F., Domann E., Niebuhr K., Gerstel B., Pistor S., Temm-Grove C. J., Jockusch B. M., Reinhard M., Walter U. A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells. EMBO J. 1995 Apr 3;14(7):1314–1321. doi: 10.1002/j.1460-2075.1995.tb07117.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Cossart P., Lecuit M. Interactions of Listeria monocytogenes with mammalian cells during entry and actin-based movement: bacterial factors, cellular ligands and signaling. EMBO J. 1998 Jul 15;17(14):3797–3806. doi: 10.1093/emboj/17.14.3797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dalla Via L., Stimamiglio M., Scapin M., Cesaro L., Deana R. Correlation between cytosolic Ca2+ concentration, protein phosphorylation and platelet secretion. Cell Calcium. 1996 Nov;20(5):431–440. doi: 10.1016/s0143-4160(96)90006-8. [DOI] [PubMed] [Google Scholar]
  8. Eigenthaler M., Ullrich H., Geiger J., Horstrup K., Hönig-Liedl P., Wiebecke D., Walter U. Defective nitrovasodilator-stimulated protein phosphorylation and calcium regulation in cGMP-dependent protein kinase-deficient human platelets of chronic myelocytic leukemia. J Biol Chem. 1993 Jun 25;268(18):13526–13531. [PubMed] [Google Scholar]
  9. Francis S. H., Corbin J. D. Structure and function of cyclic nucleotide-dependent protein kinases. Annu Rev Physiol. 1994;56:237–272. doi: 10.1146/annurev.ph.56.030194.001321. [DOI] [PubMed] [Google Scholar]
  10. Fässler R., Meyer M. Consequences of lack of beta 1 integrin gene expression in mice. Genes Dev. 1995 Aug 1;9(15):1896–1908. doi: 10.1101/gad.9.15.1896. [DOI] [PubMed] [Google Scholar]
  11. Geiger J., Nolte C., Walter U. Regulation of calcium mobilization and entry in human platelets by endothelium-derived factors. Am J Physiol. 1994 Jul;267(1 Pt 1):C236–C244. doi: 10.1152/ajpcell.1994.267.1.C236. [DOI] [PubMed] [Google Scholar]
  12. Gertler F. B., Comer A. R., Juang J. L., Ahern S. M., Clark M. J., Liebl E. C., Hoffmann F. M. enabled, a dosage-sensitive suppressor of mutations in the Drosophila Abl tyrosine kinase, encodes an Abl substrate with SH3 domain-binding properties. Genes Dev. 1995 Mar 1;9(5):521–533. doi: 10.1101/gad.9.5.521. [DOI] [PubMed] [Google Scholar]
  13. Gertler F. B., Doctor J. S., Hoffmann F. M. Genetic suppression of mutations in the Drosophila abl proto-oncogene homolog. Science. 1990 May 18;248(4957):857–860. doi: 10.1126/science.2188361. [DOI] [PubMed] [Google Scholar]
  14. Gertler F. B., Niebuhr K., Reinhard M., Wehland J., Soriano P. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell. 1996 Oct 18;87(2):227–239. doi: 10.1016/s0092-8674(00)81341-0. [DOI] [PubMed] [Google Scholar]
  15. Halbrügge M., Friedrich C., Eigenthaler M., Schanzenbächer P., Walter U. Stoichiometric and reversible phosphorylation of a 46-kDa protein in human platelets in response to cGMP- and cAMP-elevating vasodilators. J Biol Chem. 1990 Feb 25;265(6):3088–3093. [PubMed] [Google Scholar]
  16. Halbrügge M., Walter U. Purification of a vasodilator-regulated phosphoprotein from human platelets. Eur J Biochem. 1989 Oct 20;185(1):41–50. doi: 10.1111/j.1432-1033.1989.tb15079.x. [DOI] [PubMed] [Google Scholar]
  17. Horstrup K., Jablonka B., Hönig-Liedl P., Just M., Kochsiek K., Walter U. Phosphorylation of focal adhesion vasodilator-stimulated phosphoprotein at Ser157 in intact human platelets correlates with fibrinogen receptor inhibition. Eur J Biochem. 1994 Oct 1;225(1):21–27. doi: 10.1111/j.1432-1033.1994.00021.x. [DOI] [PubMed] [Google Scholar]
  18. Hughes P. E., Diaz-Gonzalez F., Leong L., Wu C., McDonald J. A., Shattil S. J., Ginsberg M. H. Breaking the integrin hinge. A defined structural constraint regulates integrin signaling. J Biol Chem. 1996 Mar 22;271(12):6571–6574. doi: 10.1074/jbc.271.12.6571. [DOI] [PubMed] [Google Scholar]
  19. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  20. Jockusch B. M., Bubeck P., Giehl K., Kroemker M., Moschner J., Rothkegel M., Rüdiger M., Schlüter K., Stanke G., Winkler J. The molecular architecture of focal adhesions. Annu Rev Cell Dev Biol. 1995;11:379–416. doi: 10.1146/annurev.cb.11.110195.002115. [DOI] [PubMed] [Google Scholar]
  21. Kehrel B., Kronenberg A., Rauterberg J., Niesing-Bresch D., Niehues U., Kardoeus J., Schwippert B., Tschöpe D., van de Loo J., Clemetson K. J. Platelets deficient in glycoprotein IIIb aggregate normally to collagens type I and III but not to collagen type V. Blood. 1993 Dec 1;82(11):3364–3370. [PubMed] [Google Scholar]
  22. Kehrel B., Wierwille S., Clemetson K. J., Anders O., Steiner M., Knight C. G., Farndale R. W., Okuma M., Barnes M. J. Glycoprotein VI is a major collagen receptor for platelet activation: it recognizes the platelet-activating quaternary structure of collagen, whereas CD36, glycoprotein IIb/IIIa, and von Willebrand factor do not. Blood. 1998 Jan 15;91(2):491–499. [PubMed] [Google Scholar]
  23. Lincoln T. M., Cornwell T. L. Intracellular cyclic GMP receptor proteins. FASEB J. 1993 Feb 1;7(2):328–338. doi: 10.1096/fasebj.7.2.7680013. [DOI] [PubMed] [Google Scholar]
  24. Markert T., Krenn V., Leebmann J., Walter U. High expression of the focal adhesion- and microfilament-associated protein VASP in vascular smooth muscle and endothelial cells of the intact human vessel wall. Basic Res Cardiol. 1996 Sep-Oct;91(5):337–343. doi: 10.1007/BF00788712. [DOI] [PubMed] [Google Scholar]
  25. Meinecke M., Geiger J., Butt E., Sandberg M., Jahnsen T., Chakraborty T., Walter U., Jarchau T., Lohmann S. M. Human cyclic GMP-dependent protein kinase I beta overexpression increases phosphorylation of an endogenous focal contact-associated vasodilator-stimulated phosphoprotein without altering the thrombin-evoked calcium response. Mol Pharmacol. 1994 Aug;46(2):283–290. [PubMed] [Google Scholar]
  26. Menshikov MYu, Ivanova K., Schaefer M., Drummer C., Gerzer R. Influence of the cGMP analog 8-PCPT-cGMP on agonist-induced increases in cytosolic ionized Ca2+ and on aggregation of human platelets. Eur J Pharmacol. 1993 May 15;245(3):281–284. doi: 10.1016/0922-4106(93)90108-l. [DOI] [PubMed] [Google Scholar]
  27. Mönks D., Lange V., Silber R. E., Markert T., Walter U., Nehls V. Expression of cGMP-dependent protein kinase I and its substrate VASP in neointimal cells of the injured rat carotid artery. Eur J Clin Invest. 1998 May;28(5):416–423. doi: 10.1046/j.1365-2362.1998.00308.x. [DOI] [PubMed] [Google Scholar]
  28. Niebuhr K., Ebel F., Frank R., Reinhard M., Domann E., Carl U. D., Walter U., Gertler F. B., Wehland J., Chakraborty T. A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. EMBO J. 1997 Sep 1;16(17):5433–5444. doi: 10.1093/emboj/16.17.5433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pantaloni D., Carlier M. F. How profilin promotes actin filament assembly in the presence of thymosin beta 4. Cell. 1993 Dec 3;75(5):1007–1014. doi: 10.1016/0092-8674(93)90544-z. [DOI] [PubMed] [Google Scholar]
  30. Pfeifer A., Klatt P., Massberg S., Ny L., Sausbier M., Hirneiss C., Wang G. X., Korth M., Aszódi A., Andersson K. E. Defective smooth muscle regulation in cGMP kinase I-deficient mice. EMBO J. 1998 Jun 1;17(11):3045–3051. doi: 10.1093/emboj/17.11.3045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Reinhard M., Giehl K., Abel K., Haffner C., Jarchau T., Hoppe V., Jockusch B. M., Walter U. The proline-rich focal adhesion and microfilament protein VASP is a ligand for profilins. EMBO J. 1995 Apr 18;14(8):1583–1589. doi: 10.1002/j.1460-2075.1995.tb07146.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Reinhard M., Halbrügge M., Scheer U., Wiegand C., Jockusch B. M., Walter U. The 46/50 kDa phosphoprotein VASP purified from human platelets is a novel protein associated with actin filaments and focal contacts. EMBO J. 1992 Jun;11(6):2063–2070. doi: 10.1002/j.1460-2075.1992.tb05264.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Reinhard M., Rüdiger M., Jockusch B. M., Walter U. VASP interaction with vinculin: a recurring theme of interactions with proline-rich motifs. FEBS Lett. 1996 Dec 9;399(1-2):103–107. doi: 10.1016/s0014-5793(96)01295-1. [DOI] [PubMed] [Google Scholar]
  34. Rink T. J., Sage S. O. Calcium signaling in human platelets. Annu Rev Physiol. 1990;52:431–449. doi: 10.1146/annurev.ph.52.030190.002243. [DOI] [PubMed] [Google Scholar]
  35. Sandberg M., Butt E., Nolte C., Fischer L., Halbrügge M., Beltman J., Jahnsen T., Genieser H. G., Jastorff B., Walter U. Characterization of Sp-5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole- 3',5'-monophosphorothioate (Sp-5,6-DCl-cBiMPS) as a potent and specific activator of cyclic-AMP-dependent protein kinase in cell extracts and intact cells. Biochem J. 1991 Oct 15;279(Pt 2):521–527. doi: 10.1042/bj2790521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schwartz M. A., Schaller M. D., Ginsberg M. H. Integrins: emerging paradigms of signal transduction. Annu Rev Cell Dev Biol. 1995;11:549–599. doi: 10.1146/annurev.cb.11.110195.003001. [DOI] [PubMed] [Google Scholar]
  37. Siess W. Molecular mechanisms of platelet activation. Physiol Rev. 1989 Jan;69(1):58–178. doi: 10.1152/physrev.1989.69.1.58. [DOI] [PubMed] [Google Scholar]
  38. Sixma J. J., van Zanten G. H., Huizinga E. G., van der Plas R. M., Verkley M., Wu Y. P., Gros P., de Groot P. G. Platelet adhesion to collagen: an update. Thromb Haemost. 1997 Jul;78(1):434–438. [PubMed] [Google Scholar]
  39. Theriot J. A., Rosenblatt J., Portnoy D. A., Goldschmidt-Clermont P. J., Mitchison T. J. Involvement of profilin in the actin-based motility of L. monocytogenes in cells and in cell-free extracts. Cell. 1994 Feb 11;76(3):505–517. doi: 10.1016/0092-8674(94)90114-7. [DOI] [PubMed] [Google Scholar]
  40. Yamada K. M., Geiger B. Molecular interactions in cell adhesion complexes. Curr Opin Cell Biol. 1997 Feb;9(1):76–85. doi: 10.1016/s0955-0674(97)80155-x. [DOI] [PubMed] [Google Scholar]
  41. Zimmer M., Fink T., Fischer L., Hauser W., Scherer K., Lichter P., Walter U. Cloning of the VASP (vasodilator-stimulated phosphoprotein) genes in human and mouse: structure, sequence, and chromosomal localization. Genomics. 1996 Sep 1;36(2):227–233. doi: 10.1006/geno.1996.0457. [DOI] [PubMed] [Google Scholar]
  42. Zucker M. B. Platelet aggregation measured by the photometric method. Methods Enzymol. 1989;169:117–133. doi: 10.1016/0076-6879(89)69054-4. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES