Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Jan 4;18(1):58–64. doi: 10.1093/emboj/18.1.58

Epistatic interactions of deletion mutants in the genes encoding the F1-ATPase in yeast Saccharomyces cerevisiae.

J Lai-Zhang 1, Y Xiao 1, D M Mueller 1
PMCID: PMC1171102  PMID: 9878050

Abstract

The F1-ATPase is a multimeric enzyme (alpha3 beta3 gamma delta epsilon) primarily responsible for the synthesis of ATP under aerobic conditions. The entire coding region of each of the genes was deleted separately in yeast, providing five null mutant strains. Strains with a deletion in the genes encoding alpha-, beta-, gamma- or delta-subunits were unable to grow, while the strain with a null mutation in epsilon was able to grow slowly on medium containing glycerol as the carbon source. In addition, strains with a null mutation in gamma or delta became 100% rho0/rho- and the strain with the null mutation in gamma grew much more slowly on medium containing glucose. These additional phenotypes were not observed in strains with the double mutations: Delta alpha Delta gamma, Delta beta Delta gamma, Deltaatp11 Delta gamma, Delta alpha Delta delta, Delta beta Delta delta or Deltaatp11 Delta delta. These results indicate that epsilon is not an essential component of the ATP synthase and that mutations in the genes encoding the alpha- and beta-subunits and in ATP11 are epistatic to null mutations in the genes encoding the gamma- and delta-subunits. These data suggest that the propensity to form rho0/rho- mutations in the gamma and delta null deletion mutant stains and the slow growing phenotypes of the null gamma mutant strain are due to the assembly of F1 deficient in the corresponding subunit. These results have profound implications for the physiology of normal cells.

Full Text

The Full Text of this article is available as a PDF (343.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahams J. P., Leslie A. G., Lutter R., Walker J. E. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994 Aug 25;370(6491):621–628. doi: 10.1038/370621a0. [DOI] [PubMed] [Google Scholar]
  2. Ackerman S. H., Tzagoloff A. Identification of two nuclear genes (ATP11, ATP12) required for assembly of the yeast F1-ATPase. Proc Natl Acad Sci U S A. 1990 Jul;87(13):4986–4990. doi: 10.1073/pnas.87.13.4986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aggeler R., Ogilvie I., Capaldi R. A. Rotation of a gamma-epsilon subunit domain in the Escherichia coli F1F0-ATP synthase complex. The gamma-epsilon subunits are essentially randomly distributed relative to the alpha3beta3delta domain in the intact complex. J Biol Chem. 1997 Aug 1;272(31):19621–19624. doi: 10.1074/jbc.272.31.19621. [DOI] [PubMed] [Google Scholar]
  4. Boyer P. D., Cross R. L., Momsen W. A new concept for energy coupling in oxidative phosphorylation based on a molecular explanation of the oxygen exchange reactions. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2837–2839. doi: 10.1073/pnas.70.10.2837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Capaldi R. A., Aggeler R., Wilkens S., Grüber G. Structural changes in the gamma and epsilon subunits of the Escherichia coli F1F0-type ATPase during energy coupling. J Bioenerg Biomembr. 1996 Oct;28(5):397–401. doi: 10.1007/BF02113980. [DOI] [PubMed] [Google Scholar]
  6. Duncan T. M., Cross R. L. A model for the catalytic site of F1-ATPase based on analogies to nucleotide-binding domains of known structure. J Bioenerg Biomembr. 1992 Oct;24(5):453–461. doi: 10.1007/BF00762362. [DOI] [PubMed] [Google Scholar]
  7. Dunn S. D., Futai M. Reconstitution of a functional coupling factor from the isolated subunits of Escherichia coli F1 ATPase. J Biol Chem. 1980 Jan 10;255(1):113–118. [PubMed] [Google Scholar]
  8. Giraud M. F., Velours J. ATP synthase of yeast mitochondria. Isolation of the F1 delta subunit, sequence and disruption of the structural gene. Eur J Biochem. 1994 Jun 15;222(3):851–859. doi: 10.1111/j.1432-1033.1994.tb18932.x. [DOI] [PubMed] [Google Scholar]
  9. Giraud M. F., Velours J. The absence of the mitochondrial ATP synthase delta subunit promotes a slow growth phenotype of rho- yeast cells by a lack of assembly of the catalytic sector F1. Eur J Biochem. 1997 May 1;245(3):813–818. doi: 10.1111/j.1432-1033.1997.00813.x. [DOI] [PubMed] [Google Scholar]
  10. Gromet-Elhanan Z. Identification of subunits required for the catalytic activity of the F1-ATPase. J Bioenerg Biomembr. 1992 Oct;24(5):447–452. doi: 10.1007/BF00762361. [DOI] [PubMed] [Google Scholar]
  11. Guélin E., Chevallier J., Rigoulet M., Guérin B., Velours J. ATP synthase of yeast mitochondria. Isolation and disruption of the ATP epsilon gene. J Biol Chem. 1993 Jan 5;268(1):161–167. [PubMed] [Google Scholar]
  12. Güldener U., Heck S., Fielder T., Beinhauer J., Hegemann J. H. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 1996 Jul 1;24(13):2519–2524. doi: 10.1093/nar/24.13.2519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hashimoto T., Yoshida Y., Tagawa K. Regulatory proteins of F1F0-ATPase: role of ATPase inhibitor. J Bioenerg Biomembr. 1990 Feb;22(1):27–38. doi: 10.1007/BF00762843. [DOI] [PubMed] [Google Scholar]
  14. Häsler K., Engelbrecht S., Junge W. Three-stepped rotation of subunits gamma and epsilon in single molecules of F-ATPase as revealed by polarized, confocal fluorometry. FEBS Lett. 1998 Apr 24;426(3):301–304. doi: 10.1016/s0014-5793(98)00358-5. [DOI] [PubMed] [Google Scholar]
  15. Jackson P. J., Harris D. A. The mitochondrial ATP synthase inhibitor protein binds near the C-terminus of the F1 beta-subunit. FEBS Lett. 1988 Feb 29;229(1):224–228. doi: 10.1016/0014-5793(88)80832-9. [DOI] [PubMed] [Google Scholar]
  16. Jounouchi M., Takeyama M., Noumi T., Moriyama Y., Maeda M., Futai M. Role of the amino terminal region of the epsilon subunit of Escherichia coli H(+)-ATPase (F0F1). Arch Biochem Biophys. 1992 Jan;292(1):87–94. doi: 10.1016/0003-9861(92)90054-z. [DOI] [PubMed] [Google Scholar]
  17. Klapholz S., Esposito R. E. A new mapping method employing a meiotic rec-mutant of yeast. Genetics. 1982 Mar;100(3):387–412. doi: 10.1093/genetics/100.3.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liang Y., Ackerman S. H. Characterization of mutations in the beta subunit of the mitochondrial F1-ATPase that produce defects in enzyme catalysis and assembly. J Biol Chem. 1996 Oct 25;271(43):26522–26528. doi: 10.1074/jbc.271.43.26522. [DOI] [PubMed] [Google Scholar]
  19. Mukhopadhyay A., Uh M., Mueller D. M. Level of ATP synthase activity required for yeast Saccharomyces cerevisiae to grow on glycerol media. FEBS Lett. 1994 Apr 25;343(2):160–164. doi: 10.1016/0014-5793(94)80310-2. [DOI] [PubMed] [Google Scholar]
  20. Neupert W. Protein import into mitochondria. Annu Rev Biochem. 1997;66:863–917. doi: 10.1146/annurev.biochem.66.1.863. [DOI] [PubMed] [Google Scholar]
  21. Niedenthal R. K., Riles L., Johnston M., Hegemann J. H. Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast. 1996 Jun 30;12(8):773–786. doi: 10.1002/(SICI)1097-0061(19960630)12:8%3C773::AID-YEA972%3E3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  22. Noji H., Yasuda R., Yoshida M., Kinosita K., Jr Direct observation of the rotation of F1-ATPase. Nature. 1997 Mar 20;386(6622):299–302. doi: 10.1038/386299a0. [DOI] [PubMed] [Google Scholar]
  23. Pati S., Brusilow W. S., Deckers-Hebestreit G., Altendorf K. Assembly of the F0 proton channel of the Escherichia coli F1F0 ATPase: low proton conductance of reconstituted Fo sectors synthesized and assembled in the absence of F1. Biochemistry. 1991 May 14;30(19):4710–4714. doi: 10.1021/bi00233a011. [DOI] [PubMed] [Google Scholar]
  24. Paul M. F., Ackerman S., Yue J., Arselin G., Velours J., Tzagolof A., Ackermann S [corrected to Ackerman S. ]. Cloning of the yeast ATP3 gene coding for the gamma-subunit of F1 and characterization of atp3 mutants. J Biol Chem. 1994 Oct 21;269(42):26158–26164. [PubMed] [Google Scholar]
  25. Schulenberg B., Wellmer F., Lill H., Junge W., Engelbrecht S. Cross-linking of chloroplast F0F1-ATPase subunit epsilon to gamma without effect on activity. Epsilon and gamma are parts of the rotor. Eur J Biochem. 1997 Oct 1;249(1):134–141. doi: 10.1111/j.1432-1033.1997.t01-1-00134.x. [DOI] [PubMed] [Google Scholar]
  26. Sherman F. Getting started with yeast. Methods Enzymol. 1991;194:3–21. doi: 10.1016/0076-6879(91)94004-v. [DOI] [PubMed] [Google Scholar]
  27. Sherman F., Hicks J. Micromanipulation and dissection of asci. Methods Enzymol. 1991;194:21–37. doi: 10.1016/0076-6879(91)94005-w. [DOI] [PubMed] [Google Scholar]
  28. Shin K., Nakamoto R. K., Maeda M., Futai M. F0F1-ATPase gamma subunit mutations perturb the coupling between catalysis and transport. J Biol Chem. 1992 Oct 15;267(29):20835–20839. [PubMed] [Google Scholar]
  29. Todd R. D., Griesenbeck T. A., Douglas M. G. The yeast mitochondrial adenosine triphosphatase complex. Subunit stoichiometry and physical characterization. J Biol Chem. 1980 Jun 10;255(11):5461–5467. [PubMed] [Google Scholar]
  30. Uh M., Jones D., Mueller D. M. The gene coding for the yeast oligomycin sensitivity-conferring protein. J Biol Chem. 1990 Nov 5;265(31):19047–19052. [PubMed] [Google Scholar]
  31. Walker J. E., Fearnley I. M., Gay N. J., Gibson B. W., Northrop F. D., Powell S. J., Runswick M. J., Saraste M., Tybulewicz V. L. Primary structure and subunit stoichiometry of F1-ATPase from bovine mitochondria. J Mol Biol. 1985 Aug 20;184(4):677–701. doi: 10.1016/0022-2836(85)90313-4. [DOI] [PubMed] [Google Scholar]
  32. Yuan H., Douglas M. G. The mitochondrial F1ATPase alpha-subunit is necessary for efficient import of mitochondrial precursors. J Biol Chem. 1992 Jul 25;267(21):14697–14702. [PubMed] [Google Scholar]
  33. Zhang Y., Oldenburg M., Fillingame R. H. Suppressor mutations in F1 subunit epsilon recouple ATP-driven H+ translocation in uncoupled Q42E subunit c mutant of Escherichia coli F1F0 ATP synthase. J Biol Chem. 1994 Apr 8;269(14):10221–10224. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES