Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Jan 4;18(1):85–95. doi: 10.1093/emboj/18.1.85

In vivo newly translated polypeptides are sequestered in a protected folding environment.

V Thulasiraman 1, C F Yang 1, J Frydman 1
PMCID: PMC1171105  PMID: 9878053

Abstract

Molecular chaperones play a fundamental role in cellular protein folding. Using intact mammalian cells we examined the contribution of cytosolic chaperones to de novo folding. A large fraction of newly translated polypeptides associate transiently with Hsc70 and the chaperonin TRiC/CCT during their biogenesis. The substrate repertoire observed for Hsc70 and TRiC is not identical: Hsc70 interacts with a wide spectrum of polypeptides larger than 20 kDa, while TRiC associates with a diverse set of proteins between 30 and 60 kDa. Overexpression of a bacterial chaperonin 'trap' that irreversibly captures unfolded polypeptides did not interrupt the productive folding pathway. The trap was unable to bind newly translated polypeptides, indicating that folding in mammalian cells occurs without the release of non-native folding intermediates into the bulk cytosol. We conclude that de novo protein folding occurs in a protected environment created by a highly processive chaperone machinery and is directly coupled to translation.

Full Text

The Full Text of this article is available as a PDF (470.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckmann R. P., Mizzen L. E., Welch W. J. Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science. 1990 May 18;248(4957):850–854. doi: 10.1126/science.2188360. [DOI] [PubMed] [Google Scholar]
  2. Blond-Elguindi S., Cwirla S. E., Dower W. J., Lipshutz R. J., Sprang S. R., Sambrook J. F., Gething M. J. Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell. 1993 Nov 19;75(4):717–728. doi: 10.1016/0092-8674(93)90492-9. [DOI] [PubMed] [Google Scholar]
  3. Braakman I., Hoover-Litty H., Wagner K. R., Helenius A. Folding of influenza hemagglutinin in the endoplasmic reticulum. J Cell Biol. 1991 Aug;114(3):401–411. doi: 10.1083/jcb.114.3.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bukau B., Hesterkamp T., Luirink J. Growing up in a dangerous environment: a network of multiple targeting and folding pathways for nascent polypeptides in the cytosol. Trends Cell Biol. 1996 Dec;6(12):480–486. doi: 10.1016/0962-8924(96)84946-4. [DOI] [PubMed] [Google Scholar]
  5. Bukau B., Horwich A. L. The Hsp70 and Hsp60 chaperone machines. Cell. 1998 Feb 6;92(3):351–366. doi: 10.1016/s0092-8674(00)80928-9. [DOI] [PubMed] [Google Scholar]
  6. Caldas T. D., El Yaagoubi A., Richarme G. Chaperone properties of bacterial elongation factor EF-Tu. J Biol Chem. 1998 May 8;273(19):11478–11482. doi: 10.1074/jbc.273.19.11478. [DOI] [PubMed] [Google Scholar]
  7. Chen X., Sullivan D. S., Huffaker T. C. Two yeast genes with similarity to TCP-1 are required for microtubule and actin function in vivo. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9111–9115. doi: 10.1073/pnas.91.19.9111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Conti E., Franks N. P., Brick P. Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure. 1996 Mar 15;4(3):287–298. doi: 10.1016/s0969-2126(96)00033-0. [DOI] [PubMed] [Google Scholar]
  9. Crombie T., Boyle J. P., Coggins J. R., Brown A. J. The folding of the bifunctional TRP3 protein in yeast is influenced by a translational pause which lies in a region of structural divergence with Escherichia coli indoleglycerol-phosphate synthase. Eur J Biochem. 1994 Dec 1;226(2):657–664. doi: 10.1111/j.1432-1033.1994.tb20093.x. [DOI] [PubMed] [Google Scholar]
  10. Cyr D. M., Langer T., Douglas M. G. DnaJ-like proteins: molecular chaperones and specific regulators of Hsp70. Trends Biochem Sci. 1994 Apr;19(4):176–181. doi: 10.1016/0968-0004(94)90281-x. [DOI] [PubMed] [Google Scholar]
  11. Ditzel L., Löwe J., Stock D., Stetter K. O., Huber H., Huber R., Steinbacher S. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell. 1998 Apr 3;93(1):125–138. doi: 10.1016/s0092-8674(00)81152-6. [DOI] [PubMed] [Google Scholar]
  12. Dobrzynski J. K., Sternlicht M. L., Farr G. W., Sternlicht H. Newly-synthesized beta-tubulin demonstrates domain-specific interactions with the cytosolic chaperonin. Biochemistry. 1996 Dec 10;35(49):15870–15882. doi: 10.1021/bi961114j. [DOI] [PubMed] [Google Scholar]
  13. Eggers D. K., Welch W. J., Hansen W. J. Complexes between nascent polypeptides and their molecular chaperones in the cytosol of mammalian cells. Mol Biol Cell. 1997 Aug;8(8):1559–1573. doi: 10.1091/mbc.8.8.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ellis R. J., Hartl F. U. Protein folding in the cell: competing models of chaperonin function. FASEB J. 1996 Jan;10(1):20–26. doi: 10.1096/fasebj.10.1.8566542. [DOI] [PubMed] [Google Scholar]
  15. Ellis R. J. The "bio" in biochemistry: protein folding inside and outside the cell. Science. 1996 Jun 7;272(5267):1448–1449. doi: 10.1126/science.272.5267.1448. [DOI] [PubMed] [Google Scholar]
  16. Ewalt K. L., Hendrick J. P., Houry W. A., Hartl F. U. In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell. 1997 Aug 8;90(3):491–500. doi: 10.1016/s0092-8674(00)80509-7. [DOI] [PubMed] [Google Scholar]
  17. Farr G. W., Scharl E. C., Schumacher R. J., Sondek S., Horwich A. L. Chaperonin-mediated folding in the eukaryotic cytosol proceeds through rounds of release of native and nonnative forms. Cell. 1997 Jun 13;89(6):927–937. doi: 10.1016/s0092-8674(00)80278-0. [DOI] [PubMed] [Google Scholar]
  18. Flynn G. C., Pohl J., Flocco M. T., Rothman J. E. Peptide-binding specificity of the molecular chaperone BiP. Nature. 1991 Oct 24;353(6346):726–730. doi: 10.1038/353726a0. [DOI] [PubMed] [Google Scholar]
  19. Freundlieb S., Baron U., Bonin A. L., Gossen M., Bujard H. Use of tetracycline-controlled gene expression systems to study mammalian cell cycle. Methods Enzymol. 1997;283:159–173. doi: 10.1016/s0076-6879(97)83014-5. [DOI] [PubMed] [Google Scholar]
  20. Frydman J., Hartl F. U. Principles of chaperone-assisted protein folding: differences between in vitro and in vivo mechanisms. Science. 1996 Jun 7;272(5267):1497–1502. doi: 10.1126/science.272.5267.1497. [DOI] [PubMed] [Google Scholar]
  21. Frydman J., Höhfeld J. Chaperones get in touch: the Hip-Hop connection. Trends Biochem Sci. 1997 Mar;22(3):87–92. doi: 10.1016/s0968-0004(97)01005-0. [DOI] [PubMed] [Google Scholar]
  22. Frydman J., Nimmesgern E., Erdjument-Bromage H., Wall J. S., Tempst P., Hartl F. U. Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. EMBO J. 1992 Dec;11(13):4767–4778. doi: 10.1002/j.1460-2075.1992.tb05582.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Frydman J., Nimmesgern E., Ohtsuka K., Hartl F. U. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature. 1994 Jul 14;370(6485):111–117. doi: 10.1038/370111a0. [DOI] [PubMed] [Google Scholar]
  24. Gao Y., Thomas J. O., Chow R. L., Lee G. H., Cowan N. J. A cytoplasmic chaperonin that catalyzes beta-actin folding. Cell. 1992 Jun 12;69(6):1043–1050. doi: 10.1016/0092-8674(92)90622-j. [DOI] [PubMed] [Google Scholar]
  25. Geissler S., Siegers K., Schiebel E. A novel protein complex promoting formation of functional alpha- and gamma-tubulin. EMBO J. 1998 Feb 16;17(4):952–966. doi: 10.1093/emboj/17.4.952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Gething M. J., Sambrook J. Protein folding in the cell. Nature. 1992 Jan 2;355(6355):33–45. doi: 10.1038/355033a0. [DOI] [PubMed] [Google Scholar]
  27. Glover J. R., Lindquist S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell. 1998 Jul 10;94(1):73–82. doi: 10.1016/s0092-8674(00)81223-4. [DOI] [PubMed] [Google Scholar]
  28. Gossen M., Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5547–5551. doi: 10.1073/pnas.89.12.5547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hansen W. J., Lingappa V. R., Welch W. J. Complex environment of nascent polypeptide chains. J Biol Chem. 1994 Oct 28;269(43):26610–26613. [PubMed] [Google Scholar]
  30. Hartl F. U. Molecular chaperones in cellular protein folding. Nature. 1996 Jun 13;381(6583):571–579. doi: 10.1038/381571a0. [DOI] [PubMed] [Google Scholar]
  31. Hayer-Hartl M. K., Ewbank J. J., Creighton T. E., Hartl F. U. Conformational specificity of the chaperonin GroEL for the compact folding intermediates of alpha-lactalbumin. EMBO J. 1994 Jul 1;13(13):3192–3202. doi: 10.1002/j.1460-2075.1994.tb06618.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Hynes G., Kubota H., Willison K. R. Antibody characterisation of two distinct conformations of the chaperonin-containing TCP-1 from mouse testis. FEBS Lett. 1995 Jan 23;358(2):129–132. doi: 10.1016/0014-5793(94)01408-s. [DOI] [PubMed] [Google Scholar]
  33. Höhfeld J. Regulation of the heat shock conjugate Hsc70 in the mammalian cell: the characterization of the anti-apoptotic protein BAG-1 provides novel insights. Biol Chem. 1998 Mar;379(3):269–274. [PubMed] [Google Scholar]
  34. Johnson J. L., Craig E. A. Protein folding in vivo: unraveling complex pathways. Cell. 1997 Jul 25;90(2):201–204. doi: 10.1016/s0092-8674(00)80327-x. [DOI] [PubMed] [Google Scholar]
  35. Jones P. P. Analysis of H-2 and Ia antigens by two-dimensional polyacrylamide gel electrophoresis. Methods Enzymol. 1984;108:452–466. doi: 10.1016/s0076-6879(84)08111-8. [DOI] [PubMed] [Google Scholar]
  36. Kabsch W., Mannherz H. G., Suck D. Three-dimensional structure of the complex of actin and DNase I at 4.5 A resolution. EMBO J. 1985 Aug;4(8):2113–2118. doi: 10.1002/j.1460-2075.1985.tb03900.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Kudlicki W., Coffman A., Kramer G., Hardesty B. Ribosomes and ribosomal RNA as chaperones for folding of proteins. Fold Des. 1997;2(2):101–108. doi: 10.1016/S1359-0278(97)00014-X. [DOI] [PubMed] [Google Scholar]
  38. Lewis V. A., Hynes G. M., Zheng D., Saibil H., Willison K. T-complex polypeptide-1 is a subunit of a heteromeric particle in the eukaryotic cytosol. Nature. 1992 Jul 16;358(6383):249–252. doi: 10.1038/358249a0. [DOI] [PubMed] [Google Scholar]
  39. Li G. C., Werb Z. Correlation between synthesis of heat shock proteins and development of thermotolerance in Chinese hamster fibroblasts. Proc Natl Acad Sci U S A. 1982 May;79(10):3218–3222. doi: 10.1073/pnas.79.10.3218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Nathan D. F., Vos M. H., Lindquist S. In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12949–12956. doi: 10.1073/pnas.94.24.12949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Nelson R. J., Ziegelhoffer T., Nicolet C., Werner-Washburne M., Craig E. A. The translation machinery and 70 kd heat shock protein cooperate in protein synthesis. Cell. 1992 Oct 2;71(1):97–105. doi: 10.1016/0092-8674(92)90269-i. [DOI] [PubMed] [Google Scholar]
  42. Netzer W. J., Hartl F. U. Recombination of protein domains facilitated by co-translational folding in eukaryotes. Nature. 1997 Jul 24;388(6640):343–349. doi: 10.1038/41024. [DOI] [PubMed] [Google Scholar]
  43. Nogales E., Wolf S. G., Downing K. H. Structure of the alpha beta tubulin dimer by electron crystallography. Nature. 1998 Jan 8;391(6663):199–203. doi: 10.1038/34465. [DOI] [PubMed] [Google Scholar]
  44. Palleros D. R., Shi L., Reid K. L., Fink A. L. hsp70-protein complexes. Complex stability and conformation of bound substrate protein. J Biol Chem. 1994 May 6;269(18):13107–13114. [PubMed] [Google Scholar]
  45. Pfund C., Lopez-Hoyo N., Ziegelhoffer T., Schilke B. A., Lopez-Buesa P., Walter W. A., Wiedmann M., Craig E. A. The molecular chaperone Ssb from Saccharomyces cerevisiae is a component of the ribosome-nascent chain complex. EMBO J. 1998 Jul 15;17(14):3981–3989. doi: 10.1093/emboj/17.14.3981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Roobol A., Holmes F. E., Hayes N. V., Baines A. J., Carden M. J. Cytoplasmic chaperonin complexes enter neurites developing in vitro and differ in subunit composition within single cells. J Cell Sci. 1995 Apr;108(Pt 4):1477–1488. doi: 10.1242/jcs.108.4.1477. [DOI] [PubMed] [Google Scholar]
  47. Rüdiger S., Germeroth L., Schneider-Mergener J., Bukau B. Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J. 1997 Apr 1;16(7):1501–1507. doi: 10.1093/emboj/16.7.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sondek J., Bohm A., Lambright D. G., Hamm H. E., Sigler P. B. Crystal structure of a G-protein beta gamma dimer at 2.1A resolution. Nature. 1996 Jan 25;379(6563):369–374. doi: 10.1038/379369a0. [DOI] [PubMed] [Google Scholar]
  49. Vainberg I. E., Lewis S. A., Rommelaere H., Ampe C., Vandekerckhove J., Klein H. L., Cowan N. J. Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell. 1998 May 29;93(5):863–873. doi: 10.1016/s0092-8674(00)81446-4. [DOI] [PubMed] [Google Scholar]
  50. Vinh D. B., Drubin D. G. A yeast TCP-1-like protein is required for actin function in vivo. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9116–9120. doi: 10.1073/pnas.91.19.9116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Weissman J. S., Kashi Y., Fenton W. A., Horwich A. L. GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms. Cell. 1994 Aug 26;78(4):693–702. doi: 10.1016/0092-8674(94)90533-9. [DOI] [PubMed] [Google Scholar]
  52. Wiedmann B., Sakai H., Davis T. A., Wiedmann M. A protein complex required for signal-sequence-specific sorting and translocation. Nature. 1994 Aug 11;370(6489):434–440. doi: 10.1038/370434a0. [DOI] [PubMed] [Google Scholar]
  53. Yan W., Schilke B., Pfund C., Walter W., Kim S., Craig E. A. Zuotin, a ribosome-associated DnaJ molecular chaperone. EMBO J. 1998 Aug 17;17(16):4809–4817. doi: 10.1093/emboj/17.16.4809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Zechel K. Isolation of polymerization-competent cytoplasmic actin by affinity chromatography on immobilized DNAse I using formamide as eluant. Eur J Biochem. 1980 Sep;110(2):343–348. doi: 10.1111/j.1432-1033.1980.tb04873.x. [DOI] [PubMed] [Google Scholar]
  55. Zhong T., Arndt K. T. The yeast SIS1 protein, a DnaJ homolog, is required for the initiation of translation. Cell. 1993 Jun 18;73(6):1175–1186. doi: 10.1016/0092-8674(93)90646-8. [DOI] [PubMed] [Google Scholar]
  56. Ziegelhoffer T., Johnson J. L., Craig E. A. Chaperones get Hip. Protein folding. Curr Biol. 1996 Mar 1;6(3):272–275. doi: 10.1016/s0960-9822(02)00476-1. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES