Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Jan 4;18(1):109–118. doi: 10.1093/emboj/18.1.109

Receptor protein tyrosine phosphatase alpha participates in the m1 muscarinic acetylcholine receptor-dependent regulation of Kv1.2 channel activity.

W Tsai 1, A D Morielli 1, T G Cachero 1, E G Peralta 1
PMCID: PMC1171107  PMID: 9878055

Abstract

The phosphorylation state of a given tyrosine residue is determined by both protein tyrosine kinase (PTK) and protein tyrosine phosphatase (PTP) activities. However, little is known about the functional interaction of these opposing activities at the level of an identified effector molecule. G protein-coupled receptors (GPCRs), including the m1 muscarinic acetylcholine receptor (mAChR), regulate a tyrosine kinase activity that phosphorylates and suppresses current generated by the Kv1.2 potassium channel. We examined the possibility that PTPs also participate in this signaling pathway since the tyrosine phosphatase inhibitor vanadate increases the extent of both Kv1.2 phosphorylation and suppression. We show that an endogenous transmembrane tyrosine phosphatase, receptor tyrosine phosphatase alpha (RPTPalpha), becomes tyrosine phosphorylated and co-immunoprecipitates with Kv1.2 in a manner dependent on m1 receptor activation. The N- and C-termini of Kv1.2 are shown to bind RPTPalpha in vitro. Overexpression of RPTPalpha in Xenopus oocytes increases resting Kv1.2 current. Biochemical and electrophysiological analysis reveals that recruiting RPTPalpha to Kv1.2 functionally reverses the tyrosine kinase-induced phosphorylation and suppression of Kv1.2 current in mammalian cells. Taken together, these results identify RPTPalpha as a new target of m1 mAChR signaling and reveal a novel regulatory mechanism whereby GPCR-mediated suppression of a potassium channel depends on the coordinate and parallel regulation of PTK and PTP activities.

Full Text

The Full Text of this article is available as a PDF (387.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali M. S., Schieffer B., Delafontaine P., Bernstein K. E., Ling B. N., Marrero M. B. Angiotensin II stimulates tyrosine phosphorylation and activation of insulin receptor substrate 1 and protein-tyrosine phosphatase 1D in vascular smooth muscle cells. J Biol Chem. 1997 May 9;272(19):12373–12379. doi: 10.1074/jbc.272.19.12373. [DOI] [PubMed] [Google Scholar]
  2. Bennett A. M., Tang T. L., Sugimoto S., Walsh C. T., Neel B. G. Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7335–7339. doi: 10.1073/pnas.91.15.7335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berstein G., Blank J. L., Smrcka A. V., Higashijima T., Sternweis P. C., Exton J. H., Ross E. M. Reconstitution of agonist-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis using purified m1 muscarinic receptor, Gq/11, and phospholipase C-beta 1. J Biol Chem. 1992 Apr 25;267(12):8081–8088. [PubMed] [Google Scholar]
  4. Bilwes A. M., den Hertog J., Hunter T., Noel J. P. Structural basis for inhibition of receptor protein-tyrosine phosphatase-alpha by dimerization. Nature. 1996 Aug 8;382(6591):555–559. doi: 10.1038/382555a0. [DOI] [PubMed] [Google Scholar]
  5. Cachero T. G., Morielli A. D., Peralta E. G. The small GTP-binding protein RhoA regulates a delayed rectifier potassium channel. Cell. 1998 Jun 12;93(6):1077–1085. doi: 10.1016/s0092-8674(00)81212-x. [DOI] [PubMed] [Google Scholar]
  6. Cantley L. C., Auger K. R., Carpenter C., Duckworth B., Graziani A., Kapeller R., Soltoff S. Oncogenes and signal transduction. Cell. 1991 Jan 25;64(2):281–302. doi: 10.1016/0092-8674(91)90639-g. [DOI] [PubMed] [Google Scholar]
  7. Catarsi S., Drapeau P. Requirement for tyrosine phosphatase during serotonergic neuromodulation by protein kinase C. J Neurosci. 1997 Aug 1;17(15):5792–5797. doi: 10.1523/JNEUROSCI.17-15-05792.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Daub H., Weiss F. U., Wallasch C., Ullrich A. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature. 1996 Feb 8;379(6565):557–560. doi: 10.1038/379557a0. [DOI] [PubMed] [Google Scholar]
  9. Daum G., Regenass S., Sap J., Schlessinger J., Fischer E. H. Multiple forms of the human tyrosine phosphatase RPTP alpha. Isozymes and differences in glycosylation. J Biol Chem. 1994 Apr 8;269(14):10524–10528. [PubMed] [Google Scholar]
  10. Felsch J. S., Cachero T. G., Peralta E. G. Activation of protein tyrosine kinase PYK2 by the m1 muscarinic acetylcholine receptor. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5051–5056. doi: 10.1073/pnas.95.9.5051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grieco F., Hay J. M., Hull R. An improved procedure for the purification of protein fused with glutathione S-transferase. Biotechniques. 1992 Dec;13(6):856–858. [PubMed] [Google Scholar]
  12. Holmes T. C., Fadool D. A., Ren R., Levitan I. B. Association of Src tyrosine kinase with a human potassium channel mediated by SH3 domain. Science. 1996 Dec 20;274(5295):2089–2091. doi: 10.1126/science.274.5295.2089. [DOI] [PubMed] [Google Scholar]
  13. Hopfield J. F., Tank D. W., Greengard P., Huganir R. L. Functional modulation of the nicotinic acetylcholine receptor by tyrosine phosphorylation. Nature. 1988 Dec 15;336(6200):677–680. doi: 10.1038/336677a0. [DOI] [PubMed] [Google Scholar]
  14. Huang X. Y., Morielli A. D., Peralta E. G. Tyrosine kinase-dependent suppression of a potassium channel by the G protein-coupled m1 muscarinic acetylcholine receptor. Cell. 1993 Dec 17;75(6):1145–1156. doi: 10.1016/0092-8674(93)90324-j. [DOI] [PubMed] [Google Scholar]
  15. Hunter T., Cooper J. A. Protein-tyrosine kinases. Annu Rev Biochem. 1985;54:897–930. doi: 10.1146/annurev.bi.54.070185.004341. [DOI] [PubMed] [Google Scholar]
  16. Jayaraman T., Ondrias K., Ondriasová E., Marks A. R. Regulation of the inositol 1,4,5-trisphosphate receptor by tyrosine phosphorylation. Science. 1996 Jun 7;272(5267):1492–1494. doi: 10.1126/science.272.5267.1492. [DOI] [PubMed] [Google Scholar]
  17. Lechleiter J., Girard S., Clapham D., Peralta E. Subcellular patterns of calcium release determined by G protein-specific residues of muscarinic receptors. Nature. 1991 Apr 11;350(6318):505–508. doi: 10.1038/350505a0. [DOI] [PubMed] [Google Scholar]
  18. Lechleiter J., Hellmiss R., Duerson K., Ennulat D., David N., Clapham D., Peralta E. Distinct sequence elements control the specificity of G protein activation by muscarinic acetylcholine receptor subtypes. EMBO J. 1990 Dec;9(13):4381–4390. doi: 10.1002/j.1460-2075.1990.tb07888.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lev S., Moreno H., Martinez R., Canoll P., Peles E., Musacchio J. M., Plowman G. D., Rudy B., Schlessinger J. Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature. 1995 Aug 31;376(6543):737–745. doi: 10.1038/376737a0. [DOI] [PubMed] [Google Scholar]
  20. Lhoták V., Greer P., Letwin K., Pawson T. Characterization of elk, a brain-specific receptor tyrosine kinase. Mol Cell Biol. 1991 May;11(5):2496–2502. doi: 10.1128/mcb.11.5.2496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Li W., Nishimura R., Kashishian A., Batzer A. G., Kim W. J., Cooper J. A., Schlessinger J. A new function for a phosphotyrosine phosphatase: linking GRB2-Sos to a receptor tyrosine kinase. Mol Cell Biol. 1994 Jan;14(1):509–517. doi: 10.1128/mcb.14.1.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Møller N. P., Møller K. B., Lammers R., Kharitonenkov A., Hoppe E., Wiberg F. C., Sures I., Ullrich A. Selective down-regulation of the insulin receptor signal by protein-tyrosine phosphatases alpha and epsilon. J Biol Chem. 1995 Sep 29;270(39):23126–23131. doi: 10.1074/jbc.270.39.23126. [DOI] [PubMed] [Google Scholar]
  23. Neel B. G., Tonks N. K. Protein tyrosine phosphatases in signal transduction. Curr Opin Cell Biol. 1997 Apr;9(2):193–204. doi: 10.1016/s0955-0674(97)80063-4. [DOI] [PubMed] [Google Scholar]
  24. Newton A. C. Protein kinase C: structure, function, and regulation. J Biol Chem. 1995 Dec 1;270(48):28495–28498. doi: 10.1074/jbc.270.48.28495. [DOI] [PubMed] [Google Scholar]
  25. Paulmichl M., Nasmith P., Hellmiss R., Reed K., Boyle W. A., Nerbonne J. M., Peralta E. G., Clapham D. E. Cloning and expression of a rat cardiac delayed rectifier potassium channel. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7892–7895. doi: 10.1073/pnas.88.17.7892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pawson T. Protein modules and signalling networks. Nature. 1995 Feb 16;373(6515):573–580. doi: 10.1038/373573a0. [DOI] [PubMed] [Google Scholar]
  27. Peralta E. G., Ashkenazi A., Winslow J. W., Ramachandran J., Capon D. J. Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature. 1988 Aug 4;334(6181):434–437. doi: 10.1038/334434a0. [DOI] [PubMed] [Google Scholar]
  28. Pulido R., Serra-Pagès C., Tang M., Streuli M. The LAR/PTP delta/PTP sigma subfamily of transmembrane protein-tyrosine-phosphatases: multiple human LAR, PTP delta, and PTP sigma isoforms are expressed in a tissue-specific manner and associate with the LAR-interacting protein LIP.1. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11686–11690. doi: 10.1073/pnas.92.25.11686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sap J., D'Eustachio P., Givol D., Schlessinger J. Cloning and expression of a widely expressed receptor tyrosine phosphatase. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6112–6116. doi: 10.1073/pnas.87.16.6112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Serra-Pagès C., Kedersha N. L., Fazikas L., Medley Q., Debant A., Streuli M. The LAR transmembrane protein tyrosine phosphatase and a coiled-coil LAR-interacting protein co-localize at focal adhesions. EMBO J. 1995 Jun 15;14(12):2827–2838. doi: 10.1002/j.1460-2075.1995.tb07282.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stein-Gerlach M., Kharitonenkov A., Vogel W., Ali S., Ullrich A. Protein-tyrosine phosphatase 1D modulates its own state of tyrosine phosphorylation. J Biol Chem. 1995 Oct 20;270(42):24635–24637. doi: 10.1074/jbc.270.42.24635. [DOI] [PubMed] [Google Scholar]
  32. Stover D. R., Walsh K. A. Protein-tyrosine phosphatase activity of CD45 is activated by sequential phosphorylation by two kinases. Mol Cell Biol. 1994 Aug;14(8):5523–5532. doi: 10.1128/mcb.14.8.5523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Su J., Batzer A., Sap J. Receptor tyrosine phosphatase R-PTP-alpha is tyrosine-phosphorylated and associated with the adaptor protein Grb2. J Biol Chem. 1994 Jul 22;269(29):18731–18734. [PubMed] [Google Scholar]
  34. Toullec D., Pianetti P., Coste H., Bellevergue P., Grand-Perret T., Ajakane M., Baudet V., Boissin P., Boursier E., Loriolle F. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem. 1991 Aug 25;266(24):15771–15781. [PubMed] [Google Scholar]
  35. Tracy S., van der Geer P., Hunter T. The receptor-like protein-tyrosine phosphatase, RPTP alpha, is phosphorylated by protein kinase C on two serines close to the inner face of the plasma membrane. J Biol Chem. 1995 May 5;270(18):10587–10594. doi: 10.1074/jbc.270.18.10587. [DOI] [PubMed] [Google Scholar]
  36. Tsai W., Morielli A. D., Peralta E. G. The m1 muscarinic acetylcholine receptor transactivates the EGF receptor to modulate ion channel activity. EMBO J. 1997 Aug 1;16(15):4597–4605. doi: 10.1093/emboj/16.15.4597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ullrich A., Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990 Apr 20;61(2):203–212. doi: 10.1016/0092-8674(90)90801-k. [DOI] [PubMed] [Google Scholar]
  38. Vogel W., Lammers R., Huang J., Ullrich A. Activation of a phosphotyrosine phosphatase by tyrosine phosphorylation. Science. 1993 Mar 12;259(5101):1611–1614. doi: 10.1126/science.7681217. [DOI] [PubMed] [Google Scholar]
  39. Wang Y. T., Salter M. W. Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature. 1994 May 19;369(6477):233–235. doi: 10.1038/369233a0. [DOI] [PubMed] [Google Scholar]
  40. Wilson G. F., Kaczmarek L. K. Mode-switching of a voltage-gated cation channel is mediated by a protein kinase A-regulated tyrosine phosphatase. Nature. 1993 Dec 2;366(6454):433–438. doi: 10.1038/366433a0. [DOI] [PubMed] [Google Scholar]
  41. Zheng X. M., Wang Y., Pallen C. J. Cell transformation and activation of pp60c-src by overexpression of a protein tyrosine phosphatase. Nature. 1992 Sep 24;359(6393):336–339. doi: 10.1038/359336a0. [DOI] [PubMed] [Google Scholar]
  42. den Hertog J., Sap J., Pals C. E., Schlessinger J., Kruijer W. Stimulation of receptor protein-tyrosine phosphatase alpha activity and phosphorylation by phorbol ester. Cell Growth Differ. 1995 Mar;6(3):303–307. [PubMed] [Google Scholar]
  43. den Hertog J., Tracy S., Hunter T. Phosphorylation of receptor protein-tyrosine phosphatase alpha on Tyr789, a binding site for the SH3-SH2-SH3 adaptor protein GRB-2 in vivo. EMBO J. 1994 Jul 1;13(13):3020–3032. doi: 10.1002/j.1460-2075.1994.tb06601.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES