Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Jan 4;18(1):229–240. doi: 10.1093/emboj/18.1.229

Mutations in both the structured domain and N-terminus of histone H2B bypass the requirement for Swi-Snf in yeast.

J Recht 1, M A Osley 1
PMCID: PMC1171117  PMID: 9878065

Abstract

The chromatin elements targeted by the ATPdependent, Swi-Snf nucleosome-remodeling complex are unknown. To address this question, we generated mutations in yeast histone H2B that suppress phenotypes associated with the absence of Swi-Snf. Sin- (Swi-Snf-independent) mutations occur in residues involved in H2A-H2B dimer formation, dimer- tetramer association, and in the H2B N-terminus. The strongest and most pleiotropic Sin- mutation removed 20 amino acid residues from the H2B N-terminus. This mutation allowed active chromatin to be formed at the SUC2 locus in a snf5Delta mutant and resulted in hyperactivated levels of SUC2 mRNA under inducing conditions. Thus, the H2B N-terminus may be an important target of Swi-Snf in vivo. The GCN5 gene product, the catalytic subunit of several nuclear histone acetytransferase complexes that modify histone N-termini, was also found to act in conjunction with Swi-Snf. The phenotypes of double gcn5Deltasnf5Delta mutants suggest that histone acetylation may play both positive and negative roles in the activity of the Swi-Snf-remodeling factor.

Full Text

The Full Text of this article is available as a PDF (405.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrams E., Neigeborn L., Carlson M. Molecular analysis of SNF2 and SNF5, genes required for expression of glucose-repressible genes in Saccharomyces cerevisiae. Mol Cell Biol. 1986 Nov;6(11):3643–3651. doi: 10.1128/mcb.6.11.3643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allan J., Harborne N., Rau D. C., Gould H. Participation of core histone "tails" in the stabilization of the chromatin solenoid. J Cell Biol. 1982 May;93(2):285–297. doi: 10.1083/jcb.93.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arents G., Burlingame R. W., Wang B. C., Love W. E., Moudrianakis E. N. The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10148–10152. doi: 10.1073/pnas.88.22.10148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boeke J. D., LaCroute F., Fink G. R. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet. 1984;197(2):345–346. doi: 10.1007/BF00330984. [DOI] [PubMed] [Google Scholar]
  5. Brownell J. E., Zhou J., Ranalli T., Kobayashi R., Edmondson D. G., Roth S. Y., Allis C. D. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell. 1996 Mar 22;84(6):843–851. doi: 10.1016/s0092-8674(00)81063-6. [DOI] [PubMed] [Google Scholar]
  6. Burns L. G., Peterson C. L. The yeast SWI-SNF complex facilitates binding of a transcriptional activator to nucleosomal sites in vivo. Mol Cell Biol. 1997 Aug;17(8):4811–4819. doi: 10.1128/mcb.17.8.4811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cairns B. R. Chromatin remodeling machines: similar motors, ulterior motives. Trends Biochem Sci. 1998 Jan;23(1):20–25. doi: 10.1016/s0968-0004(97)01160-2. [DOI] [PubMed] [Google Scholar]
  8. Cary P. D., Crane-Robinson C., Bradbury E. M., Dixon G. H. Effect of acetylation on the binding of N-terminal peptides of histone H4 to DNA. Eur J Biochem. 1982 Sep;127(1):137–143. doi: 10.1111/j.1432-1033.1982.tb06847.x. [DOI] [PubMed] [Google Scholar]
  9. Chen H., Li B., Workman J. L. A histone-binding protein, nucleoplasmin, stimulates transcription factor binding to nucleosomes and factor-induced nucleosome disassembly. EMBO J. 1994 Jan 15;13(2):380–390. doi: 10.1002/j.1460-2075.1994.tb06272.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Côté J., Peterson C. L., Workman J. L. Perturbation of nucleosome core structure by the SWI/SNF complex persists after its detachment, enhancing subsequent transcription factor binding. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4947–4952. doi: 10.1073/pnas.95.9.4947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Côté J., Quinn J., Workman J. L., Peterson C. L. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science. 1994 Jul 1;265(5168):53–60. doi: 10.1126/science.8016655. [DOI] [PubMed] [Google Scholar]
  12. DeLange R. J., Williams L. C., Martinson H. G. Identification of interacting amino acids at the histone 2A--2B binding site. Biochemistry. 1979 May 15;18(10):1942–1946. doi: 10.1021/bi00577a014. [DOI] [PubMed] [Google Scholar]
  13. Edmondson D. G., Smith M. M., Roth S. Y. Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4. Genes Dev. 1996 May 15;10(10):1247–1259. doi: 10.1101/gad.10.10.1247. [DOI] [PubMed] [Google Scholar]
  14. Fisher-Adams G., Grunstein M. Yeast histone H4 and H3 N-termini have different effects on the chromatin structure of the GAL1 promoter. EMBO J. 1995 Apr 3;14(7):1468–1477. doi: 10.1002/j.1460-2075.1995.tb07133.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fletcher T. M., Hansen J. C. Core histone tail domains mediate oligonucleosome folding and nucleosomal DNA organization through distinct molecular mechanisms. J Biol Chem. 1995 Oct 27;270(43):25359–25362. doi: 10.1074/jbc.270.43.25359. [DOI] [PubMed] [Google Scholar]
  16. Fletcher T. M., Hansen J. C. The nucleosomal array: structure/function relationships. Crit Rev Eukaryot Gene Expr. 1996;6(2-3):149–188. doi: 10.1615/critreveukargeneexpr.v6.i2-3.40. [DOI] [PubMed] [Google Scholar]
  17. Garcia-Ramirez M., Rocchini C., Ausio J. Modulation of chromatin folding by histone acetylation. J Biol Chem. 1995 Jul 28;270(30):17923–17928. doi: 10.1074/jbc.270.30.17923. [DOI] [PubMed] [Google Scholar]
  18. Gavin I. M., Simpson R. T. Interplay of yeast global transcriptional regulators Ssn6p-Tup1p and Swi-Snf and their effect on chromatin structure. EMBO J. 1997 Oct 15;16(20):6263–6271. doi: 10.1093/emboj/16.20.6263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Georgakopoulos T., Thireos G. Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription. EMBO J. 1992 Nov;11(11):4145–4152. doi: 10.1002/j.1460-2075.1992.tb05507.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Georgel P. T., Tsukiyama T., Wu C. Role of histone tails in nucleosome remodeling by Drosophila NURF. EMBO J. 1997 Aug 1;16(15):4717–4726. doi: 10.1093/emboj/16.15.4717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Grant P. A., Duggan L., Côté J., Roberts S. M., Brownell J. E., Candau R., Ohba R., Owen-Hughes T., Allis C. D., Winston F. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 1997 Jul 1;11(13):1640–1650. doi: 10.1101/gad.11.13.1640. [DOI] [PubMed] [Google Scholar]
  22. Grunstein M. Histone acetylation in chromatin structure and transcription. Nature. 1997 Sep 25;389(6649):349–352. doi: 10.1038/38664. [DOI] [PubMed] [Google Scholar]
  23. Hansen J. C., Wolffe A. P. A role for histones H2A/H2B in chromatin folding and transcriptional repression. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2339–2343. doi: 10.1073/pnas.91.6.2339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hayes J. J., Wolffe A. P. Histones H2A/H2B inhibit the interaction of transcription factor IIIA with the Xenopus borealis somatic 5S RNA gene in a nucleosome. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1229–1233. doi: 10.1073/pnas.89.4.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hecht A., Laroche T., Strahl-Bolsinger S., Gasser S. M., Grunstein M. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell. 1995 Feb 24;80(4):583–592. doi: 10.1016/0092-8674(95)90512-x. [DOI] [PubMed] [Google Scholar]
  26. Hirschhorn J. N., Bortvin A. L., Ricupero-Hovasse S. L., Winston F. A new class of histone H2A mutations in Saccharomyces cerevisiae causes specific transcriptional defects in vivo. Mol Cell Biol. 1995 Apr;15(4):1999–2009. doi: 10.1128/mcb.15.4.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hirschhorn J. N., Brown S. A., Clark C. D., Winston F. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev. 1992 Dec;6(12A):2288–2298. doi: 10.1101/gad.6.12a.2288. [DOI] [PubMed] [Google Scholar]
  28. Imbalzano A. N., Kwon H., Green M. R., Kingston R. E. Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature. 1994 Aug 11;370(6489):481–485. doi: 10.1038/370481a0. [DOI] [PubMed] [Google Scholar]
  29. Imbalzano A. N., Schnitzler G. R., Kingston R. E. Nucleosome disruption by human SWI/SNF is maintained in the absence of continued ATP hydrolysis. J Biol Chem. 1996 Aug 23;271(34):20726–20733. doi: 10.1074/jbc.271.34.20726. [DOI] [PubMed] [Google Scholar]
  30. Kim J., Shen B., Dorsett D. The Drosophila melanogaster suppressor of Hairy-wing zinc finger protein has minimal effects on gene expression in Saccharomyces cerevisiae. Genetics. 1993 Oct;135(2):343–355. doi: 10.1093/genetics/135.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kingston R. E., Bunker C. A., Imbalzano A. N. Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev. 1996 Apr 15;10(8):905–920. doi: 10.1101/gad.10.8.905. [DOI] [PubMed] [Google Scholar]
  32. Kleinschmidt A. M., Martinson H. G. Role of histone tyrosines in nucleosome formation and histone-histone interaction. J Biol Chem. 1984 Jan 10;259(1):497–503. [PubMed] [Google Scholar]
  33. Kornberg R. D., Lorch Y. Chromatin structure and transcription. Annu Rev Cell Biol. 1992;8:563–587. doi: 10.1146/annurev.cb.08.110192.003023. [DOI] [PubMed] [Google Scholar]
  34. Kruger W., Peterson C. L., Sil A., Coburn C., Arents G., Moudrianakis E. N., Herskowitz I. Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev. 1995 Nov 15;9(22):2770–2779. doi: 10.1101/gad.9.22.2770. [DOI] [PubMed] [Google Scholar]
  35. Kuo M. H., Brownell J. E., Sobel R. E., Ranalli T. A., Cook R. G., Edmondson D. G., Roth S. Y., Allis C. D. Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature. 1996 Sep 19;383(6597):269–272. doi: 10.1038/383269a0. [DOI] [PubMed] [Google Scholar]
  36. Kuo M. H., Zhou J., Jambeck P., Churchill M. E., Allis C. D. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev. 1998 Mar 1;12(5):627–639. doi: 10.1101/gad.12.5.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Kurumizaka H., Wolffe A. P. Sin mutations of histone H3: influence on nucleosome core structure and function. Mol Cell Biol. 1997 Dec;17(12):6953–6969. doi: 10.1128/mcb.17.12.6953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Kwon H., Imbalzano A. N., Khavari P. A., Kingston R. E., Green M. R. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature. 1994 Aug 11;370(6489):477–481. doi: 10.1038/370477a0. [DOI] [PubMed] [Google Scholar]
  39. Laurent B. C., Treitel M. A., Carlson M. Functional interdependence of the yeast SNF2, SNF5, and SNF6 proteins in transcriptional activation. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2687–2691. doi: 10.1073/pnas.88.7.2687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Laurent B. C., Treitel M. A., Carlson M. The SNF5 protein of Saccharomyces cerevisiae is a glutamine- and proline-rich transcriptional activator that affects expression of a broad spectrum of genes. Mol Cell Biol. 1990 Nov;10(11):5616–5625. doi: 10.1128/mcb.10.11.5616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Lee D. Y., Hayes J. J., Pruss D., Wolffe A. P. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell. 1993 Jan 15;72(1):73–84. doi: 10.1016/0092-8674(93)90051-q. [DOI] [PubMed] [Google Scholar]
  42. Lenfant F., Mann R. K., Thomsen B., Ling X., Grunstein M. All four core histone N-termini contain sequences required for the repression of basal transcription in yeast. EMBO J. 1996 Aug 1;15(15):3974–3985. [PMC free article] [PubMed] [Google Scholar]
  43. Ling X., Harkness T. A., Schultz M. C., Fisher-Adams G., Grunstein M. Yeast histone H3 and H4 amino termini are important for nucleosome assembly in vivo and in vitro: redundant and position-independent functions in assembly but not in gene regulation. Genes Dev. 1996 Mar 15;10(6):686–699. doi: 10.1101/gad.10.6.686. [DOI] [PubMed] [Google Scholar]
  44. Logie C., Peterson C. L. Catalytic activity of the yeast SWI/SNF complex on reconstituted nucleosome arrays. EMBO J. 1997 Nov 17;16(22):6772–6782. doi: 10.1093/emboj/16.22.6772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Lorch Y., Cairns B. R., Zhang M., Kornberg R. D. Activated RSC-nucleosome complex and persistently altered form of the nucleosome. Cell. 1998 Jul 10;94(1):29–34. doi: 10.1016/s0092-8674(00)81218-0. [DOI] [PubMed] [Google Scholar]
  46. Luger K., Mäder A. W., Richmond R. K., Sargent D. F., Richmond T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997 Sep 18;389(6648):251–260. doi: 10.1038/38444. [DOI] [PubMed] [Google Scholar]
  47. Mizuguchi G., Tsukiyama T., Wisniewski J., Wu C. Role of nucleosome remodeling factor NURF in transcriptional activation of chromatin. Mol Cell. 1997 Dec;1(1):141–150. doi: 10.1016/s1097-2765(00)80015-5. [DOI] [PubMed] [Google Scholar]
  48. Neigeborn L., Carlson M. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics. 1984 Dec;108(4):845–858. doi: 10.1093/genetics/108.4.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Norris D., Dunn B., Osley M. A. The effect of histone gene deletions on chromatin structure in Saccharomyces cerevisiae. Science. 1988 Nov 4;242(4879):759–761. doi: 10.1126/science.2847314. [DOI] [PubMed] [Google Scholar]
  50. Owen-Hughes T., Utley R. T., Côté J., Peterson C. L., Workman J. L. Persistent site-specific remodeling of a nucleosome array by transient action of the SWI/SNF complex. Science. 1996 Jul 26;273(5274):513–516. doi: 10.1126/science.273.5274.513. [DOI] [PubMed] [Google Scholar]
  51. Paranjape S. M., Kamakaka R. T., Kadonaga J. T. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu Rev Biochem. 1994;63:265–297. doi: 10.1146/annurev.bi.63.070194.001405. [DOI] [PubMed] [Google Scholar]
  52. Peterson C. L., Dingwall A., Scott M. P. Five SWI/SNF gene products are components of a large multisubunit complex required for transcriptional enhancement. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):2905–2908. doi: 10.1073/pnas.91.8.2905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Peterson C. L., Kruger W., Herskowitz I. A functional interaction between the C-terminal domain of RNA polymerase II and the negative regulator SIN1. Cell. 1991 Mar 22;64(6):1135–1143. doi: 10.1016/0092-8674(91)90268-4. [DOI] [PubMed] [Google Scholar]
  54. Polach K. J., Widom J. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J Mol Biol. 1995 Nov 24;254(2):130–149. doi: 10.1006/jmbi.1995.0606. [DOI] [PubMed] [Google Scholar]
  55. Pollard K. J., Peterson C. L. Role for ADA/GCN5 products in antagonizing chromatin-mediated transcriptional repression. Mol Cell Biol. 1997 Nov;17(11):6212–6222. doi: 10.1128/mcb.17.11.6212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Puerta C., Hernández F., López-Alarcón L., Palacián E. Acetylation of histone H2A.H2B dimers facilitates transcription. Biochem Biophys Res Commun. 1995 May 16;210(2):409–416. doi: 10.1006/bbrc.1995.1676. [DOI] [PubMed] [Google Scholar]
  57. Pérez-Martín J., Johnson A. D. Mutations in chromatin components suppress a defect of Gcn5 protein in Saccharomyces cerevisiae. Mol Cell Biol. 1998 Feb;18(2):1049–1054. doi: 10.1128/mcb.18.2.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Quinn J., Fyrberg A. M., Ganster R. W., Schmidt M. C., Peterson C. L. DNA-binding properties of the yeast SWI/SNF complex. Nature. 1996 Feb 29;379(6568):844–847. doi: 10.1038/379844a0. [DOI] [PubMed] [Google Scholar]
  59. Recht J., Dunn B., Raff A., Osley M. A. Functional analysis of histones H2A and H2B in transcriptional repression in Saccharomyces cerevisiae. Mol Cell Biol. 1996 Jun;16(6):2545–2553. doi: 10.1128/mcb.16.6.2545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Roberts S. M., Winston F. Essential functional interactions of SAGA, a Saccharomyces cerevisiae complex of Spt, Ada, and Gcn5 proteins, with the Snf/Swi and Srb/mediator complexes. Genetics. 1997 Oct;147(2):451–465. doi: 10.1093/genetics/147.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Saleh A., Lang V., Cook R., Brandl C. J. Identification of native complexes containing the yeast coactivator/repressor proteins NGG1/ADA3 and ADA2. J Biol Chem. 1997 Feb 28;272(9):5571–5578. doi: 10.1074/jbc.272.9.5571. [DOI] [PubMed] [Google Scholar]
  62. Santisteban M. S., Arents G., Moudrianakis E. N., Smith M. M. Histone octamer function in vivo: mutations in the dimer-tetramer interfaces disrupt both gene activation and repression. EMBO J. 1997 May 1;16(9):2493–2506. doi: 10.1093/emboj/16.9.2493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Schnitzler G., Sif S., Kingston R. E. Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state. Cell. 1998 Jul 10;94(1):17–27. doi: 10.1016/s0092-8674(00)81217-9. [DOI] [PubMed] [Google Scholar]
  64. Schuster T., Han M., Grunstein M. Yeast histone H2A and H2B amino termini have interchangeable functions. Cell. 1986 May 9;45(3):445–451. doi: 10.1016/0092-8674(86)90330-2. [DOI] [PubMed] [Google Scholar]
  65. Schwarz P. M., Felthauser A., Fletcher T. M., Hansen J. C. Reversible oligonucleosome self-association: dependence on divalent cations and core histone tail domains. Biochemistry. 1996 Apr 2;35(13):4009–4015. doi: 10.1021/bi9525684. [DOI] [PubMed] [Google Scholar]
  66. Schwarz P. M., Hansen J. C. Formation and stability of higher order chromatin structures. Contributions of the histone octamer. J Biol Chem. 1994 Jun 10;269(23):16284–16289. [PubMed] [Google Scholar]
  67. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Stern M., Jensen R., Herskowitz I. Five SWI genes are required for expression of the HO gene in yeast. J Mol Biol. 1984 Oct 5;178(4):853–868. doi: 10.1016/0022-2836(84)90315-2. [DOI] [PubMed] [Google Scholar]
  69. Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 1998 Mar 1;12(5):599–606. doi: 10.1101/gad.12.5.599. [DOI] [PubMed] [Google Scholar]
  70. Ura K., Kurumizaka H., Dimitrov S., Almouzni G., Wolffe A. P. Histone acetylation: influence on transcription, nucleosome mobility and positioning, and linker histone-dependent transcriptional repression. EMBO J. 1997 Apr 15;16(8):2096–2107. doi: 10.1093/emboj/16.8.2096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Vettese-Dadey M., Grant P. A., Hebbes T. R., Crane- Robinson C., Allis C. D., Workman J. L. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J. 1996 May 15;15(10):2508–2518. [PMC free article] [PubMed] [Google Scholar]
  72. Wang L., Liu L., Berger S. L. Critical residues for histone acetylation by Gcn5, functioning in Ada and SAGA complexes, are also required for transcriptional function in vivo. Genes Dev. 1998 Mar 1;12(5):640–653. doi: 10.1101/gad.12.5.640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Wechser M. A., Kladde M. P., Alfieri J. A., Peterson C. L. Effects of Sin- versions of histone H4 on yeast chromatin structure and function. EMBO J. 1997 Apr 15;16(8):2086–2095. doi: 10.1093/emboj/16.8.2086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Winston F., Carlson M. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet. 1992 Nov;8(11):387–391. doi: 10.1016/0168-9525(92)90300-s. [DOI] [PubMed] [Google Scholar]
  75. Worcel A., Strogatz S., Riley D. Structure of chromatin and the linking number of DNA. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1461–1465. doi: 10.1073/pnas.78.3.1461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Wu L., Winston F. Evidence that Snf-Swi controls chromatin structure over both the TATA and UAS regions of the SUC2 promoter in Saccharomyces cerevisiae. Nucleic Acids Res. 1997 Nov 1;25(21):4230–4234. doi: 10.1093/nar/25.21.4230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Zhang W., Bone J. R., Edmondson D. G., Turner B. M., Roth S. Y. Essential and redundant functions of histone acetylation revealed by mutation of target lysines and loss of the Gcn5p acetyltransferase. EMBO J. 1998 Jun 1;17(11):3155–3167. doi: 10.1093/emboj/17.11.3155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Zweidler A. Role of individual histone tyrosines in the formation of the nucleosome complex. Biochemistry. 1992 Sep 29;31(38):9205–9211. doi: 10.1021/bi00153a013. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES