Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Jan 15;18(2):306–312. doi: 10.1093/emboj/18.2.306

Identification of a novel proline-rich peptide-binding domain in prolyl 4-hydroxylase.

J Myllyharju 1, K I Kivirikko 1
PMCID: PMC1171125  PMID: 9889187

Abstract

Prolyl 4-hydroxylase (EC 1.14.11.2) catalyzes the hydroxylation of -X-Pro-Gly- sequences and plays a central role in the synthesis of all collagens. The [alpha(I)]2beta2 type I enzyme is effectively inhibited by poly(L-proline), whereas the [alpha(II)]2beta2 type II enzyme is not. We report here that the poly(L-proline) and (Pro-Pro-Gly)10 peptide substrate-binding domain of prolyl 4-hydroxylase is distinct from the catalytic domain and consists of approximately 100 amino acids. Peptides of 10-19 kDa beginning around residue 140 in the 517 residue alpha(I) subunit remained bound to poly(L-proline) agarose after limited proteolysis of the human type I enzyme tetramer. A recombinant polypeptide corresponding to the alpha(I) subunit residues 138-244 and expressed in Escherichia coli was soluble, became effectively bound to poly(L-proline) agarose and could be eluted with (Pro-Pro-Gly)10. This polypeptide is distinct from the SH3 and WW domains, and from profilin, and thus represents a new type of proline-rich peptide-binding module. Studies with enzyme tetramers containing mutated alpha subunits demonstrated that the presence of a glutamate and a glutamine in the alpha(II) subunit in the positions corresponding to Ile182 and Tyr233 in the alpha(I) subunit explains most of the lack of poly(L-proline) binding of the type II prolyl 4-hydroxylase. Keywords: collagen/dioxygenases/peptide-binding domain/ proline-rich/prolyl hydroxylase

Full Text

The Full Text of this article is available as a PDF (314.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Annunen P., Autio-Harmainen H., Kivirikko K. I. The novel type II prolyl 4-hydroxylase is the main enzyme form in chondrocytes and capillary endothelial cells, whereas the type I enzyme predominates in most cells. J Biol Chem. 1998 Mar 13;273(11):5989–5992. doi: 10.1074/jbc.273.11.5989. [DOI] [PubMed] [Google Scholar]
  2. Annunen P., Helaakoski T., Myllyharju J., Veijola J., Pihlajaniemi T., Kivirikko K. I. Cloning of the human prolyl 4-hydroxylase alpha subunit isoform alpha(II) and characterization of the type II enzyme tetramer. The alpha(I) and alpha(II) subunits do not form a mixed alpha(I)alpha(II)beta2 tetramer. J Biol Chem. 1997 Jul 11;272(28):17342–17348. doi: 10.1074/jbc.272.28.17342. [DOI] [PubMed] [Google Scholar]
  3. Björkegren C., Rozycki M., Schutt C. E., Lindberg U., Karlsson R. Mutagenesis of human profilin locates its poly(L-proline)-binding site to a hydrophobic patch of aromatic amino acids. FEBS Lett. 1993 Oct 25;333(1-2):123–126. doi: 10.1016/0014-5793(93)80388-b. [DOI] [PubMed] [Google Scholar]
  4. Helaakoski T., Annunen P., Vuori K., MacNeil I. A., Pihlajaniemi T., Kivirikko K. I. Cloning, baculovirus expression, and characterization of a second mouse prolyl 4-hydroxylase alpha-subunit isoform: formation of an alpha 2 beta 2 tetramer with the protein disulfide-isomerase/beta subunit. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4427–4431. doi: 10.1073/pnas.92.10.4427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Helaakoski T., Veijola J., Vuori K., Rehn M., Chow L. T., Taillon-Miller P., Kivirikko K. I., Pihlajaniemi T. Structure and expression of the human gene for the alpha subunit of prolyl 4-hydroxylase. The two alternatively spliced types of mRNA correspond to two homologous exons the sequences of which are expressed in a variety of tissues. J Biol Chem. 1994 Nov 11;269(45):27847–27854. [PubMed] [Google Scholar]
  6. Helaakoski T., Vuori K., Myllylä R., Kivirikko K. I., Pihlajaniemi T. Molecular cloning of the alpha-subunit of human prolyl 4-hydroxylase: the complete cDNA-derived amino acid sequence and evidence for alternative splicing of RNA transcripts. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4392–4396. doi: 10.1073/pnas.86.12.4392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kivirikko K. I., Myllyharju J. Prolyl 4-hydroxylases and their protein disulfide isomerase subunit. Matrix Biol. 1998 Feb;16(7):357–368. doi: 10.1016/s0945-053x(98)90009-9. [DOI] [PubMed] [Google Scholar]
  8. Kivirikko K. I., Myllylä R. Posttranslational enzymes in the biosynthesis of collagen: intracellular enzymes. Methods Enzymol. 1982;82(Pt A):245–304. doi: 10.1016/0076-6879(82)82067-3. [DOI] [PubMed] [Google Scholar]
  9. Kivirikko K. I., Pihlajaniemi T. Collagen hydroxylases and the protein disulfide isomerase subunit of prolyl 4-hydroxylases. Adv Enzymol Relat Areas Mol Biol. 1998;72:325–398. doi: 10.1002/9780470123188.ch9. [DOI] [PubMed] [Google Scholar]
  10. Lamberg A., Pihlajaniemi T., Kivirikko K. I. Site-directed mutagenesis of the alpha subunit of human prolyl 4-hydroxylase. Identification of three histidine residues critical for catalytic activity. J Biol Chem. 1995 Apr 28;270(17):9926–9931. doi: 10.1074/jbc.270.17.9926. [DOI] [PubMed] [Google Scholar]
  11. Macias M. J., Hyvönen M., Baraldi E., Schultz J., Sudol M., Saraste M., Oschkinat H. Structure of the WW domain of a kinase-associated protein complexed with a proline-rich peptide. Nature. 1996 Aug 15;382(6592):646–649. doi: 10.1038/382646a0. [DOI] [PubMed] [Google Scholar]
  12. Mahoney N. M., Janmey P. A., Almo S. C. Structure of the profilin-poly-L-proline complex involved in morphogenesis and cytoskeletal regulation. Nat Struct Biol. 1997 Nov;4(11):953–960. doi: 10.1038/nsb1197-953. [DOI] [PubMed] [Google Scholar]
  13. Myllyharju J., Kivirikko K. I. Characterization of the iron- and 2-oxoglutarate-binding sites of human prolyl 4-hydroxylase. EMBO J. 1997 Mar 17;16(6):1173–1180. doi: 10.1093/emboj/16.6.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Myllylä R., Günzler V., Kivirikko K. I., Kaska D. D. Modification of vertebrate and algal prolyl 4-hydroxylases and vertebrate lysyl hydroxylase by diethyl pyrocarbonate. Evidence for histidine residues in the catalytic site of 2-oxoglutarate-coupled dioxygenases. Biochem J. 1992 Sep 15;286(Pt 3):923–927. doi: 10.1042/bj2860923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Myllylä R., Tuderman L., Kivirikko K. I. Mechanism of the prolyl hydroxylase reaction. 2. Kinetic analysis of the reaction sequence. Eur J Biochem. 1977 Nov 1;80(2):349–357. doi: 10.1111/j.1432-1033.1977.tb11889.x. [DOI] [PubMed] [Google Scholar]
  16. Noble M. E., Musacchio A., Saraste M., Courtneidge S. A., Wierenga R. K. Crystal structure of the SH3 domain in human Fyn; comparison of the three-dimensional structures of SH3 domains in tyrosine kinases and spectrin. EMBO J. 1993 Jul;12(7):2617–2624. doi: 10.2210/pdb1shf/pdb. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pihlajaniemi T., Helaakoski T., Tasanen K., Myllylä R., Huhtala M. L., Koivu J., Kivirikko K. I. Molecular cloning of the beta-subunit of human prolyl 4-hydroxylase. This subunit and protein disulphide isomerase are products of the same gene. EMBO J. 1987 Mar;6(3):643–649. doi: 10.1002/j.1460-2075.1987.tb04803.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Prockop D. J., Kivirikko K. I. Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem. 1995;64:403–434. doi: 10.1146/annurev.bi.64.070195.002155. [DOI] [PubMed] [Google Scholar]
  19. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sudol M., Chen H. I., Bougeret C., Einbond A., Bork P. Characterization of a novel protein-binding module--the WW domain. FEBS Lett. 1995 Aug 1;369(1):67–71. doi: 10.1016/0014-5793(95)00550-s. [DOI] [PubMed] [Google Scholar]
  21. Veijola J., Annunen P., Koivunen P., Page A. P., Pihlajaniemi T., Kivirikko K. I. Baculovirus expression of two protein disulphide isomerase isoforms from Caenorhabditis elegans and characterization of prolyl 4-hydroxylases containing one of these polypeptides as their beta subunit. Biochem J. 1996 Aug 1;317(Pt 3):721–729. doi: 10.1042/bj3170721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Veijola J., Koivunen P., Annunen P., Pihlajaniemi T., Kivirikko K. I. Cloning, baculovirus expression, and characterization of the alpha subunit of prolyl 4-hydroxylase from the nematode Caenorhabditis elegans. This alpha subunit forms an active alpha beta dimer with the human protein disulfide isomerase/beta subunit. J Biol Chem. 1994 Oct 28;269(43):26746–26753. [PubMed] [Google Scholar]
  23. Vuori K., Pihlajaniemi T., Marttila M., Kivirikko K. I. Characterization of the human prolyl 4-hydroxylase tetramer and its multifunctional protein disulfide-isomerase subunit synthesized in a baculovirus expression system. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7467–7470. doi: 10.1073/pnas.89.16.7467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Xu W., Harrison S. C., Eck M. J. Three-dimensional structure of the tyrosine kinase c-Src. Nature. 1997 Feb 13;385(6617):595–602. doi: 10.1038/385595a0. [DOI] [PubMed] [Google Scholar]
  25. Yu H., Chen J. K., Feng S., Dalgarno D. C., Brauer A. W., Schreiber S. L. Structural basis for the binding of proline-rich peptides to SH3 domains. Cell. 1994 Mar 11;76(5):933–945. doi: 10.1016/0092-8674(94)90367-0. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES