Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Feb 1;18(3):595–604. doi: 10.1093/emboj/18.3.595

Propeptide cleavage conditions sortilin/neurotensin receptor-3 for ligand binding.

C Munck Petersen 1, M S Nielsen 1, C Jacobsen 1, J Tauris 1, L Jacobsen 1, J Gliemann 1, S K Moestrup 1, P Madsen 1
PMCID: PMC1171152  PMID: 9927419

Abstract

We recently reported the isolation and sequencing of sortilin, a new putative sorting receptor that binds receptor-associated protein (RAP). The luminal N-terminus of sortilin comprises a consensus sequence for cleavage by furin, R41WRR44, which precedes a truncation originally found in sortilin isolated from human brain. We now show that the truncation results from cellular processing. Sortilin is synthesized as a proform which, in late Golgi compartments, is converted to the mature receptor by furin-mediated cleavage of a 44 residue N-terminal propeptide. We further demonstrate that the propeptide exhibits pH-dependent high affinity binding to fully processed sortilin, that the binding is competed for by RAP and the newly discovered sortilin ligand neurotensin, and that prevention of propeptide cleavage essentially prevents binding of RAP and neurotensin. The findings evidence that the propeptide sterically hinders ligands from gaining access to overlapping binding sites in prosortilin, and that cleavage and release of the propeptide preconditions sortilin for full functional activity. Although proteolytic processing is involved in the maturation of several receptors, the described exposure of previously concealed ligand-binding sites after furin-mediated cleavage of propeptide represents a novel mechanism in receptor activation.

Full Text

The Full Text of this article is available as a PDF (434.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson E. D., VanSlyke J. K., Thulin C. D., Jean F., Thomas G. Activation of the furin endoprotease is a multiple-step process: requirements for acidification and internal propeptide cleavage. EMBO J. 1997 Apr 1;16(7):1508–1518. doi: 10.1093/emboj/16.7.1508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barbero P., Rovère C., De Bie I., Seidah N., Beaudet A., Kitabgi P. PC5-A-mediated processing of pro-neurotensin in early compartments of the regulated secretory pathway of PC5-transfected PC12 cells. J Biol Chem. 1998 Sep 25;273(39):25339–25346. doi: 10.1074/jbc.273.39.25339. [DOI] [PubMed] [Google Scholar]
  3. Bean A. J., Dagerlind A., Hökfelt T., Dobner P. R. Cloning of human neurotensin/neuromedin N genomic sequences and expression in the ventral mesencephalon of schizophrenics and age/sex matched controls. Neuroscience. 1992 Sep;50(2):259–268. doi: 10.1016/0306-4522(92)90421-w. [DOI] [PubMed] [Google Scholar]
  4. Bravo D. A., Gleason J. B., Sanchez R. I., Roth R. A., Fuller R. S. Accurate and efficient cleavage of the human insulin proreceptor by the human proprotein-processing protease furin. Characterization and kinetic parameters using the purified, secreted soluble protease expressed by a recombinant baculovirus. J Biol Chem. 1994 Oct 14;269(41):25830–25837. [PubMed] [Google Scholar]
  5. Bu G., Schwartz A. L. RAP, a novel type of ER chaperone. Trends Cell Biol. 1998 Jul;8(7):272–276. doi: 10.1016/s0962-8924(98)01283-5. [DOI] [PubMed] [Google Scholar]
  6. Böhm S. K., Khitin L. M., Grady E. F., Aponte G., Payan D. G., Bunnett N. W. Mechanisms of desensitization and resensitization of proteinase-activated receptor-2. J Biol Chem. 1996 Sep 6;271(36):22003–22016. doi: 10.1074/jbc.271.36.22003. [DOI] [PubMed] [Google Scholar]
  7. Chabry J., Gaudriault G., Vincent J. P., Mazella J. Implication of various forms of neurotensin receptors in the mechanism of internalization of neurotensin in cerebral neurons. J Biol Chem. 1993 Aug 15;268(23):17138–17144. [PubMed] [Google Scholar]
  8. Chalon P., Vita N., Kaghad M., Guillemot M., Bonnin J., Delpech B., Le Fur G., Ferrara P., Caput D. Molecular cloning of a levocabastine-sensitive neurotensin binding site. FEBS Lett. 1996 May 20;386(2-3):91–94. doi: 10.1016/0014-5793(96)00397-3. [DOI] [PubMed] [Google Scholar]
  9. Christensen J. H., Hansen P. K., Lillelund O., Thøgersen H. C. Sequence-specific binding of the N-terminal three-finger fragment of Xenopus transcription factor IIIA to the internal control region of a 5S RNA gene. FEBS Lett. 1991 Apr 9;281(1-2):181–184. doi: 10.1016/0014-5793(91)80388-j. [DOI] [PubMed] [Google Scholar]
  10. Couët J., de Bernard S., Loosfelt H., Saunier B., Milgrom E., Misrahi M. Cell surface protein disulfide-isomerase is involved in the shedding of human thyrotropin receptor ectodomain. Biochemistry. 1996 Nov 26;35(47):14800–14805. doi: 10.1021/bi961359w. [DOI] [PubMed] [Google Scholar]
  11. Dobner P. R., Barber D. L., Villa-Komaroff L., McKiernan C. Cloning and sequence analysis of cDNA for the canine neurotensin/neuromedin N precursor. Proc Natl Acad Sci U S A. 1987 May;84(10):3516–3520. doi: 10.1073/pnas.84.10.3516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gao X., Huang L. A novel cationic liposome reagent for efficient transfection of mammalian cells. Biochem Biophys Res Commun. 1991 Aug 30;179(1):280–285. doi: 10.1016/0006-291x(91)91366-k. [DOI] [PubMed] [Google Scholar]
  13. Gliemann J. Receptors of the low density lipoprotein (LDL) receptor family in man. Multiple functions of the large family members via interaction with complex ligands. Biol Chem. 1998 Aug-Sep;379(8-9):951–964. [PubMed] [Google Scholar]
  14. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  15. Jacobsen L., Madsen P., Moestrup S. K., Lund A. H., Tommerup N., Nykjaer A., Sottrup-Jensen L., Gliemann J., Petersen C. M. Molecular characterization of a novel human hybrid-type receptor that binds the alpha2-macroglobulin receptor-associated protein. J Biol Chem. 1996 Dec 6;271(49):31379–31383. doi: 10.1074/jbc.271.49.31379. [DOI] [PubMed] [Google Scholar]
  16. Komada M., Hatsuzawa K., Shibamoto S., Ito F., Nakayama K., Kitamura N. Proteolytic processing of the hepatocyte growth factor/scatter factor receptor by furin. FEBS Lett. 1993 Aug 9;328(1-2):25–29. doi: 10.1016/0014-5793(93)80958-w. [DOI] [PubMed] [Google Scholar]
  17. Lehmann M., André F., Bellan C., Remacle-Bonnet M., Garrouste F., Parat F., Lissitsky J. C., Marvaldi J., Pommier G. Deficient processing and activity of type I insulin-like growth factor receptor in the furin-deficient LoVo-C5 cells. Endocrinology. 1998 Sep;139(9):3763–3771. doi: 10.1210/endo.139.9.6184. [DOI] [PubMed] [Google Scholar]
  18. Lin B. Z., Pilch P. F., Kandror K. V. Sortilin is a major protein component of Glut4-containing vesicles. J Biol Chem. 1997 Sep 26;272(39):24145–24147. doi: 10.1074/jbc.272.39.24145. [DOI] [PubMed] [Google Scholar]
  19. Marcusson E. G., Horazdovsky B. F., Cereghino J. L., Gharakhanian E., Emr S. D. The sorting receptor for yeast vacuolar carboxypeptidase Y is encoded by the VPS10 gene. Cell. 1994 May 20;77(4):579–586. doi: 10.1016/0092-8674(94)90219-4. [DOI] [PubMed] [Google Scholar]
  20. Mark M. R., Lokker N. A., Zioncheck T. F., Luis E. A., Godowski P. J. Expression and characterization of hepatocyte growth factor receptor-IgG fusion proteins. Effects of mutations in the potential proteolytic cleavage site on processing and ligand binding. J Biol Chem. 1992 Dec 25;267(36):26166–26171. [PubMed] [Google Scholar]
  21. Mazella J., Zsürger N., Navarro V., Chabry J., Kaghad M., Caput D., Ferrara P., Vita N., Gully D., Maffrand J. P. The 100-kDa neurotensin receptor is gp95/sortilin, a non-G-protein-coupled receptor. J Biol Chem. 1998 Oct 9;273(41):26273–26276. doi: 10.1074/jbc.273.41.26273. [DOI] [PubMed] [Google Scholar]
  22. Misumi Y., Misumi Y., Miki K., Takatsuki A., Tamura G., Ikehara Y. Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J Biol Chem. 1986 Aug 25;261(24):11398–11403. [PubMed] [Google Scholar]
  23. Morris N. J., Ross S. A., Lane W. S., Moestrup S. K., Petersen C. M., Keller S. R., Lienhard G. E. Sortilin is the major 110-kDa protein in GLUT4 vesicles from adipocytes. J Biol Chem. 1998 Feb 6;273(6):3582–3587. doi: 10.1074/jbc.273.6.3582. [DOI] [PubMed] [Google Scholar]
  24. Nakayama K. Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem J. 1997 Nov 1;327(Pt 3):625–635. doi: 10.1042/bj3270625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Obermoeller L. M., Warshawsky I., Wardell M. R., Bu G. Differential functions of triplicated repeats suggest two independent roles for the receptor-associated protein as a molecular chaperone. J Biol Chem. 1997 Apr 18;272(16):10761–10768. doi: 10.1074/jbc.272.16.10761. [DOI] [PubMed] [Google Scholar]
  26. Petersen C. M., Ellgaard L., Nykjaer A., Vilhardt F., Vorum H., Thøgersen H. C., Nielsen M. S., Jacobsen C., Moestrup S. K., Gliemann J. The receptor-associated protein (RAP) binds calmodulin and is phosphorylated by calmodulin-dependent kinase II. EMBO J. 1996 Aug 15;15(16):4165–4173. [PMC free article] [PubMed] [Google Scholar]
  27. Petersen C. M., Nielsen M. S., Nykjaer A., Jacobsen L., Tommerup N., Rasmussen H. H., Roigaard H., Gliemann J., Madsen P., Moestrup S. K. Molecular identification of a novel candidate sorting receptor purified from human brain by receptor-associated protein affinity chromatography. J Biol Chem. 1997 Feb 7;272(6):3599–3605. doi: 10.1074/jbc.272.6.3599. [DOI] [PubMed] [Google Scholar]
  28. Seidah N. G., Chrétien M. Eukaryotic protein processing: endoproteolysis of precursor proteins. Curr Opin Biotechnol. 1997 Oct;8(5):602–607. doi: 10.1016/s0958-1669(97)80036-5. [DOI] [PubMed] [Google Scholar]
  29. Shimada T., Kuroyanagi M., Nishimura M., Hara-Nishimura I. A pumpkin 72-kDa membrane protein of precursor-accumulating vesicles has characteristics of a vacuolar sorting receptor. Plant Cell Physiol. 1997 Dec;38(12):1414–1420. doi: 10.1093/oxfordjournals.pcp.a029138. [DOI] [PubMed] [Google Scholar]
  30. Sugibayashi M., Shigeta Y., Teraoka H., Kobayashi M. Characterization of unprocessed insulin proreceptors in COS 7 cells transfected with cDNA with Arg735----Ser735 point mutation at the cleavage site. Metabolism. 1992 Aug;41(8):820–826. doi: 10.1016/0026-0495(92)90161-3. [DOI] [PubMed] [Google Scholar]
  31. Tanaka K., Masu M., Nakanishi S. Structure and functional expression of the cloned rat neurotensin receptor. Neuron. 1990 Jun;4(6):847–854. doi: 10.1016/0896-6273(90)90137-5. [DOI] [PubMed] [Google Scholar]
  32. Tauris J., Ellgaard L., Jacobsen C., Nielsen M. S., Madsen P., Thøgersen H. C., Gliemann J., Petersen C. M., Moestrup S. K. The carboxy-terminal domain of the receptor-associated protein binds to the Vps10p domain of sortilin. FEBS Lett. 1998 Jun 5;429(1):27–30. doi: 10.1016/s0014-5793(98)00559-6. [DOI] [PubMed] [Google Scholar]
  33. Ullrich A., Gray A., Tam A. W., Yang-Feng T., Tsubokawa M., Collins C., Henzel W., Le Bon T., Kathuria S., Chen E. Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 1986 Oct;5(10):2503–2512. doi: 10.1002/j.1460-2075.1986.tb04528.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vincent J. P. Neurotensin receptors: binding properties, transduction pathways, and structure. Cell Mol Neurobiol. 1995 Oct;15(5):501–512. doi: 10.1007/BF02071313. [DOI] [PubMed] [Google Scholar]
  35. Vu T. K., Hung D. T., Wheaton V. I., Coughlin S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991 Mar 22;64(6):1057–1068. doi: 10.1016/0092-8674(91)90261-v. [DOI] [PubMed] [Google Scholar]
  36. Willnow T. E., Armstrong S. A., Hammer R. E., Herz J. Functional expression of low density lipoprotein receptor-related protein is controlled by receptor-associated protein in vivo. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4537–4541. doi: 10.1073/pnas.92.10.4537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Willnow T. E., Moehring J. M., Inocencio N. M., Moehring T. J., Herz J. The low-density-lipoprotein receptor-related protein (LRP) is processed by furin in vivo and in vitro. Biochem J. 1996 Jan 1;313(Pt 1):71–76. doi: 10.1042/bj3130071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Willnow T. E. Receptor-associated protein (RAP): a specialized chaperone for endocytic receptors. Biol Chem. 1998 Aug-Sep;379(8-9):1025–1031. [PubMed] [Google Scholar]
  39. Willnow T. E., Rohlmann A., Horton J., Otani H., Braun J. R., Hammer R. E., Herz J. RAP, a specialized chaperone, prevents ligand-induced ER retention and degradation of LDL receptor-related endocytic receptors. EMBO J. 1996 Jun 3;15(11):2632–2639. [PMC free article] [PubMed] [Google Scholar]
  40. Yamazaki H., Bujo H., Kusunoki J., Seimiya K., Kanaki T., Morisaki N., Schneider W. J., Saito Y. Elements of neural adhesion molecules and a yeast vacuolar protein sorting receptor are present in a novel mammalian low density lipoprotein receptor family member. J Biol Chem. 1996 Oct 4;271(40):24761–24768. doi: 10.1074/jbc.271.40.24761. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES