Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Feb 1;18(3):632–643. doi: 10.1093/emboj/18.3.632

Bcl-xL regulates apoptosis by heterodimerization-dependent and -independent mechanisms.

A J Minn 1, C S Kettlun 1, H Liang 1, A Kelekar 1, M G Vander Heiden 1, B S Chang 1, S W Fesik 1, M Fill 1, C B Thompson 1
PMCID: PMC1171156  PMID: 9927423

Abstract

A hydrophobic cleft formed by the BH1, BH2 and BH3 domains of Bcl-xL is responsible for interactions between Bcl-xL and BH3-containing death agonists. Mutants were constructed which did not bind to Bax but retained anti-apoptotic activity. Since Bcl-xL can form an ion channel in synthetic lipid membranes, the possibility that this property has a role in heterodimerization-independent cell survival was tested by replacing amino acids within the predicted channel-forming domain with the corresponding amino acids from Bax. The resulting chimera showed a reduced ability to adopt an open conductance state over a wide range of membrane potentials. Although this construct retained the ability to heterodimerize with Bax and to inhibit apoptosis, when a mutation was introduced that rendered the chimera incapable of heterodimerization, the resulting protein failed to prevent both apoptosis in mammalian cells and Bax-mediated growth defect in yeast. Similar to mammalian cells undergoing apoptosis, yeast cells expressing Bax exhibited changes in mitochondrial properties that were inhibited by Bcl-xL through heterodimerization-dependent and -independent mechanisms. These data suggest that Bcl-xL regulates cell survival by at least two distinct mechanisms; one is associated with heterodimerization and the other with the ability to form a sustained ion channel.

Full Text

The Full Text of this article is available as a PDF (779.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonsson B., Conti F., Ciavatta A., Montessuit S., Lewis S., Martinou I., Bernasconi L., Bernard A., Mermod J. J., Mazzei G. Inhibition of Bax channel-forming activity by Bcl-2. Science. 1997 Jul 18;277(5324):370–372. doi: 10.1126/science.277.5324.370. [DOI] [PubMed] [Google Scholar]
  2. Boise L. H., González-García M., Postema C. E., Ding L., Lindsten T., Turka L. A., Mao X., Nuñez G., Thompson C. B. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell. 1993 Aug 27;74(4):597–608. doi: 10.1016/0092-8674(93)90508-n. [DOI] [PubMed] [Google Scholar]
  3. Chao D. T., Korsmeyer S. J. BCL-2 family: regulators of cell death. Annu Rev Immunol. 1998;16:395–419. doi: 10.1146/annurev.immunol.16.1.395. [DOI] [PubMed] [Google Scholar]
  4. Cheng E. H., Levine B., Boise L. H., Thompson C. B., Hardwick J. M. Bax-independent inhibition of apoptosis by Bcl-XL. Nature. 1996 Feb 8;379(6565):554–556. doi: 10.1038/379554a0. [DOI] [PubMed] [Google Scholar]
  5. Chinnaiyan A. M., Chaudhary D., O'Rourke K., Koonin E. V., Dixit V. M. Role of CED-4 in the activation of CED-3. Nature. 1997 Aug 21;388(6644):728–729. doi: 10.1038/41913. [DOI] [PubMed] [Google Scholar]
  6. Chinnaiyan A. M., O'Rourke K., Lane B. R., Dixit V. M. Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science. 1997 Feb 21;275(5303):1122–1126. doi: 10.1126/science.275.5303.1122. [DOI] [PubMed] [Google Scholar]
  7. Clem R. J., Cheng E. H., Karp C. L., Kirsch D. G., Ueno K., Takahashi A., Kastan M. B., Griffin D. E., Earnshaw W. C., Veliuona M. A. Modulation of cell death by Bcl-XL through caspase interaction. Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):554–559. doi: 10.1073/pnas.95.2.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cramer W. A., Heymann J. B., Schendel S. L., Deriy B. N., Cohen F. S., Elkins P. A., Stauffacher C. V. Structure-function of the channel-forming colicins. Annu Rev Biophys Biomol Struct. 1995;24:611–641. doi: 10.1146/annurev.bb.24.060195.003143. [DOI] [PubMed] [Google Scholar]
  9. Espesset D., Duché D., Baty D., Géli V. The channel domain of colicin A is inhibited by its immunity protein through direct interaction in the Escherichia coli inner membrane. EMBO J. 1996 May 15;15(10):2356–2364. [PMC free article] [PubMed] [Google Scholar]
  10. Greenhalf W., Stephan C., Chaudhuri B. Role of mitochondria and C-terminal membrane anchor of Bcl-2 in Bax induced growth arrest and mortality in Saccharomyces cerevisiae. FEBS Lett. 1996 Feb 12;380(1-2):169–175. doi: 10.1016/0014-5793(96)00044-0. [DOI] [PubMed] [Google Scholar]
  11. Hu Y., Benedict M. A., Wu D., Inohara N., Núez G. Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4386–4391. doi: 10.1073/pnas.95.8.4386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. James C., Gschmeissner S., Fraser A., Evan G. I. CED-4 induces chromatin condensation in Schizosaccharomyces pombe and is inhibited by direct physical association with CED-9. Curr Biol. 1997 Apr 1;7(4):246–252. doi: 10.1016/s0960-9822(06)00120-5. [DOI] [PubMed] [Google Scholar]
  13. Jürgensmeier J. M., Xie Z., Deveraux Q., Ellerby L., Bredesen D., Reed J. C. Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4997–5002. doi: 10.1073/pnas.95.9.4997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kluck R. M., Bossy-Wetzel E., Green D. R., Newmeyer D. D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 1997 Feb 21;275(5303):1132–1136. doi: 10.1126/science.275.5303.1132. [DOI] [PubMed] [Google Scholar]
  15. Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med. 1997 Jun;3(6):614–620. doi: 10.1038/nm0697-614. [DOI] [PubMed] [Google Scholar]
  16. Manon S., Chaudhuri B., Guérin M. Release of cytochrome c and decrease of cytochrome c oxidase in Bax-expressing yeast cells, and prevention of these effects by coexpression of Bcl-xL. FEBS Lett. 1997 Sep 22;415(1):29–32. doi: 10.1016/s0014-5793(97)01087-9. [DOI] [PubMed] [Google Scholar]
  17. Minn A. J., Vélez P., Schendel S. L., Liang H., Muchmore S. W., Fesik S. W., Fill M., Thompson C. B. Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature. 1997 Jan 23;385(6614):353–357. doi: 10.1038/385353a0. [DOI] [PubMed] [Google Scholar]
  18. Muchmore S. W., Sattler M., Liang H., Meadows R. P., Harlan J. E., Yoon H. S., Nettesheim D., Chang B. S., Thompson C. B., Wong S. L. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature. 1996 May 23;381(6580):335–341. doi: 10.1038/381335a0. [DOI] [PubMed] [Google Scholar]
  19. Pan G., O'Rourke K., Dixit V. M. Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex. J Biol Chem. 1998 Mar 6;273(10):5841–5845. doi: 10.1074/jbc.273.10.5841. [DOI] [PubMed] [Google Scholar]
  20. Sattler M., Liang H., Nettesheim D., Meadows R. P., Harlan J. E., Eberstadt M., Yoon H. S., Shuker S. B., Chang B. S., Minn A. J. Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science. 1997 Feb 14;275(5302):983–986. doi: 10.1126/science.275.5302.983. [DOI] [PubMed] [Google Scholar]
  21. Schendel S. L., Xie Z., Montal M. O., Matsuyama S., Montal M., Reed J. C. Channel formation by antiapoptotic protein Bcl-2. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5113–5118. doi: 10.1073/pnas.94.10.5113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schlesinger P. H., Gross A., Yin X. M., Yamamoto K., Saito M., Waksman G., Korsmeyer S. J. Comparison of the ion channel characteristics of proapoptotic BAX and antiapoptotic BCL-2. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11357–11362. doi: 10.1073/pnas.94.21.11357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sedlak T. W., Oltvai Z. N., Yang E., Wang K., Boise L. H., Thompson C. B., Korsmeyer S. J. Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7834–7838. doi: 10.1073/pnas.92.17.7834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Seshagiri S., Miller L. K. Caenorhabditis elegans CED-4 stimulates CED-3 processing and CED-3-induced apoptosis. Curr Biol. 1997 Jul 1;7(7):455–460. doi: 10.1016/s0960-9822(06)00216-8. [DOI] [PubMed] [Google Scholar]
  25. Shibasaki F., Kondo E., Akagi T., McKeon F. Suppression of signalling through transcription factor NF-AT by interactions between calcineurin and Bcl-2. Nature. 1997 Apr 17;386(6626):728–731. doi: 10.1038/386728a0. [DOI] [PubMed] [Google Scholar]
  26. Shimizu S., Eguchi Y., Kamiike W., Funahashi Y., Mignon A., Lacronique V., Matsuda H., Tsujimoto Y. Bcl-2 prevents apoptotic mitochondrial dysfunction by regulating proton flux. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1455–1459. doi: 10.1073/pnas.95.4.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Silverman J. A., Mindell J. A., Finkelstein A., Shen W. H., Collier R. J. Mutational analysis of the helical hairpin region of diphtheria toxin transmembrane domain. J Biol Chem. 1994 Sep 9;269(36):22524–22532. [PubMed] [Google Scholar]
  28. Silverman J. A., Mindell J. A., Zhan H., Finkelstein A., Collier R. J. Structure-function relationships in diphtheria toxin channels: I. Determining a minimal channel-forming domain. J Membr Biol. 1994 Jan;137(1):17–28. doi: 10.1007/BF00234995. [DOI] [PubMed] [Google Scholar]
  29. Spector M. S., Desnoyers S., Hoeppner D. J., Hengartner M. O. Interaction between the C. elegans cell-death regulators CED-9 and CED-4. Nature. 1997 Feb 13;385(6617):653–656. doi: 10.1038/385653a0. [DOI] [PubMed] [Google Scholar]
  30. Susin S. A., Zamzami N., Castedo M., Daugas E., Wang H. G., Geley S., Fassy F., Reed J. C., Kroemer G. The central executioner of apoptosis: multiple connections between protease activation and mitochondria in Fas/APO-1/CD95- and ceramide-induced apoptosis. J Exp Med. 1997 Jul 7;186(1):25–37. doi: 10.1084/jem.186.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Susin S. A., Zamzami N., Castedo M., Hirsch T., Marchetti P., Macho A., Daugas E., Geuskens M., Kroemer G. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med. 1996 Oct 1;184(4):1331–1341. doi: 10.1084/jem.184.4.1331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vander Heiden M. G., Chandel N. S., Williamson E. K., Schumacker P. T., Thompson C. B. Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell. 1997 Nov 28;91(5):627–637. doi: 10.1016/s0092-8674(00)80450-x. [DOI] [PubMed] [Google Scholar]
  33. Wang H. G., Rapp U. R., Reed J. C. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell. 1996 Nov 15;87(4):629–638. doi: 10.1016/s0092-8674(00)81383-5. [DOI] [PubMed] [Google Scholar]
  34. Wu D., Wallen H. D., Inohara N., Nuñez G. Interaction and regulation of the Caenorhabditis elegans death protease CED-3 by CED-4 and CED-9. J Biol Chem. 1997 Aug 22;272(34):21449–21454. doi: 10.1074/jbc.272.34.21449. [DOI] [PubMed] [Google Scholar]
  35. Wu D., Wallen H. D., Nuñez G. Interaction and regulation of subcellular localization of CED-4 by CED-9. Science. 1997 Feb 21;275(5303):1126–1129. doi: 10.1126/science.275.5303.1126. [DOI] [PubMed] [Google Scholar]
  36. Yang J., Liu X., Bhalla K., Kim C. N., Ibrado A. M., Cai J., Peng T. I., Jones D. P., Wang X. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science. 1997 Feb 21;275(5303):1129–1132. doi: 10.1126/science.275.5303.1129. [DOI] [PubMed] [Google Scholar]
  37. Yin X. M., Oltvai Z. N., Korsmeyer S. J. BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature. 1994 May 26;369(6478):321–323. doi: 10.1038/369321a0. [DOI] [PubMed] [Google Scholar]
  38. Zha H., Fisk H. A., Yaffe M. P., Mahajan N., Herman B., Reed J. C. Structure-function comparisons of the proapoptotic protein Bax in yeast and mammalian cells. Mol Cell Biol. 1996 Nov;16(11):6494–6508. doi: 10.1128/mcb.16.11.6494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zha H., Reed J. C. Heterodimerization-independent functions of cell death regulatory proteins Bax and Bcl-2 in yeast and mammalian cells. J Biol Chem. 1997 Dec 12;272(50):31482–31488. doi: 10.1074/jbc.272.50.31482. [DOI] [PubMed] [Google Scholar]
  40. Zou H., Henzel W. J., Liu X., Lutschg A., Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell. 1997 Aug 8;90(3):405–413. doi: 10.1016/s0092-8674(00)80501-2. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES