Abstract
Prokaryotic release factor RF3 is a stimulatory protein that increases the rate of translational termination by the decoding release factors RF1 and RF2. The favoured model for RF3 function is the recycling of RF1 and RF2 after polypeptide release by displacing the factors from the ribosome. In this study, we have demonstrated that RF3 also plays an indirect role in the decoding of stop signals of highly expressed genes and recoding sites by accentuating the influence of the base following the stop codon (+4 base) on termination signal strength. The efficiency of decoding strong stop signals (e.g. UAAU and UAAG) in vivo is markedly improved with increased RF3 activity, while weak signals (UGAC and UAGC) are only modestly affected. However, RF3 is not responsible for the +4 base influence on termination signal strength, since prfC- strains lacking the protein still exhibit the same qualitative effect. The differential effect of RF3 at stop signals can be mimicked by modest overexpression of decoding RF. These findings can be interpreted according to current views of RF3 as a recycling factor, which functions to maintain the concentration of free decoding RF at stop signals, some of which are highly responsive to changes in RF levels.
Full Text
The Full Text of this article is available as a PDF (277.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atkins J. F., Weiss R. B., Gesteland R. F. Ribosome gymnastics--degree of difficulty 9.5, style 10.0. Cell. 1990 Aug 10;62(3):413–423. doi: 10.1016/0092-8674(90)90007-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capecchi M. R., Klein H. A. Characterization of three proteins involved in polypeptide chain termination. Cold Spring Harb Symp Quant Biol. 1969;34:469–477. doi: 10.1101/sqb.1969.034.01.053. [DOI] [PubMed] [Google Scholar]
- Craigen W. J., Cook R. G., Tate W. P., Caskey C. T. Bacterial peptide chain release factors: conserved primary structure and possible frameshift regulation of release factor 2. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3616–3620. doi: 10.1073/pnas.82.11.3616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalphin M. E., Brown C. M., Stockwell P. A., Tate W. P. The translational signal database, TransTerm, is now a relational database. Nucleic Acids Res. 1998 Jan 1;26(1):335–337. doi: 10.1093/nar/26.1.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farabaugh P. J. Alternative readings of the genetic code. Cell. 1993 Aug 27;74(4):591–596. doi: 10.1016/0092-8674(93)90507-M. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fraser C. M., Gocayne J. D., White O., Adams M. D., Clayton R. A., Fleischmann R. D., Bult C. J., Kerlavage A. R., Sutton G., Kelley J. M. The minimal gene complement of Mycoplasma genitalium. Science. 1995 Oct 20;270(5235):397–403. doi: 10.1126/science.270.5235.397. [DOI] [PubMed] [Google Scholar]
- Freistroffer D. V., Pavlov M. Y., MacDougall J., Buckingham R. H., Ehrenberg M. Release factor RF3 in E.coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner. EMBO J. 1997 Jul 1;16(13):4126–4133. doi: 10.1093/emboj/16.13.4126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein J. L., Caskey C. T. Peptide chain termination: effect of protein S on ribosomal binding of release factors. Proc Natl Acad Sci U S A. 1970 Oct;67(2):537–543. doi: 10.1073/pnas.67.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grentzmann G., Brechemier-Baey D., Heurgue V., Mora L., Buckingham R. H. Localization and characterization of the gene encoding release factor RF3 in Escherichia coli. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5848–5852. doi: 10.1073/pnas.91.13.5848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grentzmann G., Brechemier-Baey D., Heurgué-Hamard V., Buckingham R. H. Function of polypeptide chain release factor RF-3 in Escherichia coli. RF-3 action in termination is predominantly at UGA-containing stop signals. J Biol Chem. 1995 May 5;270(18):10595–10600. doi: 10.1074/jbc.270.18.10595. [DOI] [PubMed] [Google Scholar]
- Ito K., Ebihara K., Uno M., Nakamura Y. Conserved motifs in prokaryotic and eukaryotic polypeptide release factors: tRNA-protein mimicry hypothesis. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5443–5448. doi: 10.1073/pnas.93.11.5443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jørgensen F., Adamski F. M., Tate W. P., Kurland C. G. Release factor-dependent false stops are infrequent in Escherichia coli. J Mol Biol. 1993 Mar 5;230(1):41–50. doi: 10.1006/jmbi.1993.1124. [DOI] [PubMed] [Google Scholar]
- Kawazu Y., Ito K., Matsumura K., Nakamura Y. Comparative characterization of release factor RF-3 genes of Escherichia coli, Salmonella typhimurium, and Dichelobacter nodosus. J Bacteriol. 1995 Oct;177(19):5547–5553. doi: 10.1128/jb.177.19.5547-5553.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsumura K., Ito K., Kawazu Y., Mikuni O., Nakamura Y. Suppression of temperature-sensitive defects of polypeptide release factors RF-1 and RF-2 by mutations or by an excess of RF-3 in Escherichia coli. J Mol Biol. 1996 May 17;258(4):588–599. doi: 10.1006/jmbi.1996.0271. [DOI] [PubMed] [Google Scholar]
- Mikuni O., Ito K., Moffat J., Matsumura K., McCaughan K., Nobukuni T., Tate W., Nakamura Y. Identification of the prfC gene, which encodes peptide-chain-release factor 3 of Escherichia coli. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5798–5802. doi: 10.1073/pnas.91.13.5798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milman G., Goldstein J., Scolnick E., Caskey T. Peptide chain termination. 3. Stimulation of in vitro termination. Proc Natl Acad Sci U S A. 1969 May;63(1):183–190. doi: 10.1073/pnas.63.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moffat J. G., Tate W. P. A single proteolytic cleavage in release factor 2 stabilizes ribosome binding and abolishes peptidyl-tRNA hydrolysis activity. J Biol Chem. 1994 Jul 22;269(29):18899–18903. [PubMed] [Google Scholar]
- Nakamura Y., Ito K., Isaksson L. A. Emerging understanding of translation termination. Cell. 1996 Oct 18;87(2):147–150. doi: 10.1016/s0092-8674(00)81331-8. [DOI] [PubMed] [Google Scholar]
- Nakamura Y., Ito K., Matsumura K., Kawazu Y., Ebihara K. Regulation of translation termination: conserved structural motifs in bacterial and eukaryotic polypeptide release factors. Biochem Cell Biol. 1995 Nov-Dec;73(11-12):1113–1122. doi: 10.1139/o95-120. [DOI] [PubMed] [Google Scholar]
- Pavlov M. Y., Freistroffer D. V., Heurgué-Hamard V., Buckingham R. H., Ehrenberg M. Release factor RF3 abolishes competition between release factor RF1 and ribosome recycling factor (RRF) for a ribosome binding site. J Mol Biol. 1997 Oct 24;273(2):389–401. doi: 10.1006/jmbi.1997.1324. [DOI] [PubMed] [Google Scholar]
- Pavlov M. Y., Freistroffer D. V., MacDougall J., Buckingham R. H., Ehrenberg M. Fast recycling of Escherichia coli ribosomes requires both ribosome recycling factor (RRF) and release factor RF3. EMBO J. 1997 Jul 1;16(13):4134–4141. doi: 10.1093/emboj/16.13.4134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pedersen W. T., Curran J. F. Effects of the nucleotide 3' to an amber codon on ribosomal selection rates of suppressor tRNA and release factor-1. J Mol Biol. 1991 May 20;219(2):231–241. doi: 10.1016/0022-2836(91)90564-m. [DOI] [PubMed] [Google Scholar]
- Pel H. J., Moffat J. G., Ito K., Nakamura Y., Tate W. P. Escherichia coli release factor 3: resolving the paradox of a typical G protein structure and atypical function with guanine nucleotides. RNA. 1998 Jan;4(1):47–54. [PMC free article] [PubMed] [Google Scholar]
- Poole E. S., Brown C. M., Tate W. P. The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. EMBO J. 1995 Jan 3;14(1):151–158. doi: 10.1002/j.1460-2075.1995.tb06985.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tate W. P., Brown C. M. Translational termination: "stop" for protein synthesis or "pause" for regulation of gene expression. Biochemistry. 1992 Mar 10;31(9):2443–2450. doi: 10.1021/bi00124a001. [DOI] [PubMed] [Google Scholar]
- Tate W. P., Poole E. S., Horsfield J. A., Mannering S. A., Brown C. M., Moffat J. G., Dalphin M. E., McCaughan K. K., Major L. L., Wilson D. N. Translational termination efficiency in both bacteria and mammals is regulated by the base following the stop codon. Biochem Cell Biol. 1995 Nov-Dec;73(11-12):1095–1103. doi: 10.1139/o95-118. [DOI] [PubMed] [Google Scholar]