Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Feb 1;18(3):784–791. doi: 10.1093/emboj/18.3.784

Wild-type Flp recombinase cleaves DNA in trans.

J Lee 1, M Jayaram 1, I Grainge 1
PMCID: PMC1171171  PMID: 9927438

Abstract

Site-specific recombinases of the Integrase family utilize a common chemical mechanism to break DNA strands during recombination. A conserved Arg-His-Arg triad activates the scissile phosphodiester bond, and an active-site tyrosine provides the nucleophile to effect DNA cleavage. Is the tyrosine residue for the cleavage event derived from the same recombinase monomer which provides the RHR triad (DNA cleavage in cis), or are the triad and tyrosine derived from two separate monomers (cleavage in trans)? Do all members of the family follow the same cleavage rule, cis or trans? Solution studies and available structural data have provided conflicting answers. Experimental results with the Flp recombinase which strongly support trans cleavage have been derived either by pairing two catalytic mutants of Flp or by pairing wild-type Flp and a catalytic mutant. The inclusion of the mutant has raised new concerns, especially because of the apparent contradictions in their cleavage modes posed by other Int family members. Here we test the cleavage mode of Flp using an experimental design which excludes the use of the mutant protein, and show that the outcome is still only trans DNA cleavage.

Full Text

The Full Text of this article is available as a PDF (347.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amin A., Roca H., Luetke K., Sadowski P. D. Synapsis, strand scission, and strand exchange induced by the FLP recombinase: analysis with half-FRT sites. Mol Cell Biol. 1991 Sep;11(9):4497–4508. doi: 10.1128/mcb.11.9.4497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arciszewska L. K., Sherratt D. J. Xer site-specific recombination in vitro. EMBO J. 1995 May 1;14(9):2112–2120. doi: 10.1002/j.1460-2075.1995.tb07203.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blakely G. W., Sherratt D. J. Cis and trans in site-specific recombination. Mol Microbiol. 1996 Apr;20(1):234–237. doi: 10.1111/j.1365-2958.1996.tb02505.x. [DOI] [PubMed] [Google Scholar]
  4. Chen J. W., Evans B. R., Yang S. H., Araki H., Oshima Y., Jayaram M. Functional analysis of box I mutations in yeast site-specific recombinases Flp and R: pairwise complementation with recombinase variants lacking the active-site tyrosine. Mol Cell Biol. 1992 Sep;12(9):3757–3765. doi: 10.1128/mcb.12.9.3757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen J. W., Lee J., Jayaram M. DNA cleavage in trans by the active site tyrosine during Flp recombination: switching protein partners before exchanging strands. Cell. 1992 May 15;69(4):647–658. doi: 10.1016/0092-8674(92)90228-5. [DOI] [PubMed] [Google Scholar]
  6. Chen J. W., Yang S. H., Jayaram M. Tests for the fractional active-site model in Flp site-specific recombination. Assembly of a functional recombination complex in half-site and full-site strand transfer. J Biol Chem. 1993 Jul 5;268(19):14417–14425. [PubMed] [Google Scholar]
  7. Cheng C., Kussie P., Pavletich N., Shuman S. Conservation of structure and mechanism between eukaryotic topoisomerase I and site-specific recombinases. Cell. 1998 Mar 20;92(6):841–850. doi: 10.1016/s0092-8674(00)81411-7. [DOI] [PubMed] [Google Scholar]
  8. Esposito D., Scocca J. J. The integrase family of tyrosine recombinases: evolution of a conserved active site domain. Nucleic Acids Res. 1997 Sep 15;25(18):3605–3614. doi: 10.1093/nar/25.18.3605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Evans B. R., Chen J. W., Parsons R. L., Bauer T. K., Teplow D. B., Jayaram M. Identification of the active site tyrosine of Flp recombinase. Possible relevance of its location to the mechanism of recombination. J Biol Chem. 1990 Oct 25;265(30):18504–18510. [PubMed] [Google Scholar]
  10. Friesen H., Sadowski P. D. Mutagenesis of a conserved region of the gene encoding the FLP recombinase of Saccharomyces cerevisiae. A role for arginine 191 in binding and ligation. J Mol Biol. 1992 May 20;225(2):313–326. doi: 10.1016/0022-2836(92)90924-9. [DOI] [PubMed] [Google Scholar]
  11. Gopaul D. N., Guo F., Van Duyne G. D. Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination. EMBO J. 1998 Jul 15;17(14):4175–4187. doi: 10.1093/emboj/17.14.4175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gronostajski R. M., Sadowski P. D. The FLP recombinase of the Saccharomyces cerevisiae 2 microns plasmid attaches covalently to DNA via a phosphotyrosyl linkage. Mol Cell Biol. 1985 Nov;5(11):3274–3279. doi: 10.1128/mcb.5.11.3274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Guo F., Gopaul D. N., van Duyne G. D. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature. 1997 Sep 4;389(6646):40–46. doi: 10.1038/37925. [DOI] [PubMed] [Google Scholar]
  14. Han Y. W., Gumport R. I., Gardner J. F. Complementation of bacteriophage lambda integrase mutants: evidence for an intersubunit active site. EMBO J. 1993 Dec;12(12):4577–4584. doi: 10.1002/j.1460-2075.1993.tb06146.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hickman A. B., Waninger S., Scocca J. J., Dyda F. Molecular organization in site-specific recombination: the catalytic domain of bacteriophage HP1 integrase at 2.7 A resolution. Cell. 1997 Apr 18;89(2):227–237. doi: 10.1016/s0092-8674(00)80202-0. [DOI] [PubMed] [Google Scholar]
  16. Jayaram M., Lee J. Return to sobriety after the catalytic party. Trends Genet. 1995 Nov;11(11):432–433. doi: 10.1016/s0168-9525(00)89140-4. [DOI] [PubMed] [Google Scholar]
  17. Jayaram M. The cis-trans paradox of integrase. Science. 1997 Apr 4;276(5309):49–51. doi: 10.1126/science.276.5309.49. [DOI] [PubMed] [Google Scholar]
  18. Kwon H. J., Tirumalai R., Landy A., Ellenberger T. Flexibility in DNA recombination: structure of the lambda integrase catalytic core. Science. 1997 Apr 4;276(5309):126–131. doi: 10.1126/science.276.5309.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lee J., Jayaram M. A tetramer of the Flp recombinase silences the trimers within it during resolution of a Holliday junction substrate. Genes Dev. 1997 Sep 15;11(18):2438–2447. doi: 10.1101/gad.11.18.2438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee J., Jayaram M. Functional roles of individual recombinase monomers in strand breakage and strand union during site-specific DNA recombination. J Biol Chem. 1995 Sep 29;270(39):23203–23211. doi: 10.1074/jbc.270.39.23203. [DOI] [PubMed] [Google Scholar]
  21. Lee J., Jayaram M. Mechanism of site-specific recombination. Logic of assembling recombinase catalytic site from fractional active sites. J Biol Chem. 1993 Aug 15;268(23):17564–17570. [PubMed] [Google Scholar]
  22. Lee J., Serre M. C., Yang S. H., Whang I., Araki H., Oshima Y., Jayaram M. Functional analysis of Box II mutations in yeast site-specific recombinases Flp and R. Significance of amino acid conservation within the Int family and the yeast sub-family. J Mol Biol. 1992 Dec 20;228(4):1091–1103. doi: 10.1016/0022-2836(92)90317-d. [DOI] [PubMed] [Google Scholar]
  23. Lee J., Tonozuka T., Jayaram M. Mechanism of active site exclusion in a site-specific recombinase: role of the DNA substrate in conferring half-of-the-sites activity. Genes Dev. 1997 Nov 15;11(22):3061–3071. doi: 10.1101/gad.11.22.3061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lee J., Whang I., Jayaram M. Assembly and orientation of Flp recombinase active sites on two-, three- and four-armed DNA substrates: implications for a recombination mechanism. J Mol Biol. 1996 Apr 5;257(3):532–549. doi: 10.1006/jmbi.1996.0183. [DOI] [PubMed] [Google Scholar]
  25. Lee J., Whang I., Lee J., Jayaram M. Directed protein replacement in recombination full sites reveals trans-horizontal DNA cleavage by Flp recombinase. EMBO J. 1994 Nov 15;13(22):5346–5354. doi: 10.1002/j.1460-2075.1994.tb06869.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nunes-Düby S. E., Kwon H. J., Tirumalai R. S., Ellenberger T., Landy A. Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res. 1998 Jan 15;26(2):391–406. doi: 10.1093/nar/26.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nunes-Düby S. E., Matsumoto L., Landy A. Half-att site substrates reveal the homology independence and minimal protein requirements for productive synapsis in lambda excisive recombination. Cell. 1989 Oct 6;59(1):197–206. doi: 10.1016/0092-8674(89)90881-7. [DOI] [PubMed] [Google Scholar]
  28. Nunes-Düby S. E., Tirumalai R. S., Dorgai L., Yagil E., Weisberg R. A., Landy A. Lambda integrase cleaves DNA in cis. EMBO J. 1994 Sep 15;13(18):4421–4430. doi: 10.1002/j.1460-2075.1994.tb06762.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pargellis C. A., Nunes-Düby S. E., de Vargas L. M., Landy A. Suicide recombination substrates yield covalent lambda integrase-DNA complexes and lead to identification of the active site tyrosine. J Biol Chem. 1988 Jun 5;263(16):7678–7685. [PubMed] [Google Scholar]
  30. Parsons R. L., Evans B. R., Zheng L., Jayaram M. Functional analysis of Arg-308 mutants of Flp recombinase. Possible role of Arg-308 in coupling substrate binding to catalysis. J Biol Chem. 1990 Mar 15;265(8):4527–4533. [PubMed] [Google Scholar]
  31. Parsons R. L., Prasad P. V., Harshey R. M., Jayaram M. Step-arrest mutants of FLP recombinase: implications for the catalytic mechanism of DNA recombination. Mol Cell Biol. 1988 Aug;8(8):3303–3310. doi: 10.1128/mcb.8.8.3303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Qian X. H., Inman R. B., Cox M. M. Protein-based asymmetry and protein-protein interactions in FLP recombinase-mediated site-specific recombination. J Biol Chem. 1990 Dec 15;265(35):21779–21788. [PubMed] [Google Scholar]
  33. Redinbo M. R., Stewart L., Kuhn P., Champoux J. J., Hol W. G. Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science. 1998 Mar 6;279(5356):1504–1513. doi: 10.1126/science.279.5356.1504. [DOI] [PubMed] [Google Scholar]
  34. Serre M. C., Jayaram M. Half-site strand transfer by step-arrest mutants of yeast site-specific recombinase Flp. J Mol Biol. 1992 Jun 5;225(3):643–649. doi: 10.1016/0022-2836(92)90391-v. [DOI] [PubMed] [Google Scholar]
  35. Shaikh A. C., Sadowski P. D. The Cre recombinase cleaves the lox site in trans. J Biol Chem. 1997 Feb 28;272(9):5695–5702. doi: 10.1074/jbc.272.9.5695. [DOI] [PubMed] [Google Scholar]
  36. Stark W. M., Boocock M. R. Gatecrashers at the catalytic party. Trends Genet. 1995 Apr;11(4):121–123. doi: 10.1016/s0168-9525(00)89016-2. [DOI] [PubMed] [Google Scholar]
  37. Subramanya H. S., Arciszewska L. K., Baker R. A., Bird L. E., Sherratt D. J., Wigley D. B. Crystal structure of the site-specific recombinase, XerD. EMBO J. 1997 Sep 1;16(17):5178–5187. doi: 10.1093/emboj/16.17.5178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Voziyanov Y., Lee J., Whang I., Lee J., Jayaram M. Analyses of the first chemical step in Flp site-specific recombination: Synapsis may not be a pre-requisite for strand cleavage. J Mol Biol. 1996 Mar 8;256(4):720–735. doi: 10.1006/jmbi.1996.0120. [DOI] [PubMed] [Google Scholar]
  39. Whang I., Lee J., Jayaram M. Active-site assembly and mode of DNA cleavage by Flp recombinase during full-site recombination. Mol Cell Biol. 1994 Nov;14(11):7492–7498. doi: 10.1128/mcb.14.11.7492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yang S. H., Jayaram M. Generality of the shared active site among yeast family site-specific recombinases. The R site-specific recombinase follows the Flp paradigm [corrected]. J Biol Chem. 1994 Apr 29;269(17):12789–12796. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES