Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Feb 15;18(4):833–846. doi: 10.1093/emboj/18.4.833

Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons.

B Liss 1, R Bruns 1, J Roeper 1
PMCID: PMC1171176  PMID: 10022826

Abstract

ATP-sensitive potassium (K-ATP) channels couple the metabolic state to cellular excitability in various tissues. Several isoforms of the K-ATP channel subunits, the sulfonylurea receptor (SUR) and inwardly rectifying K channel (Kir6.X), have been cloned, but the molecular composition and functional diversity of native neuronal K-ATP channels remain unresolved. We combined functional analysis of K-ATP channels with expression profiling of K-ATP subunits at the level of single substantia nigra (SN) neurons in mouse brain slices using an RT-multiplex PCR protocol. In contrast to GABAergic neurons, single dopaminergic SN neurons displayed alternative co-expression of either SUR1, SUR2B or both SUR isoforms with Kir6.2. Dopaminergic SN neurons expressed alternative K-ATP channel species distinguished by significant differences in sulfonylurea affinity and metabolic sensitivity. In single dopaminergic SN neurons, co-expression of SUR1 + Kir6.2, but not of SUR2B + Kir6.2, correlated with functional K-ATP channels highly sensitive to metabolic inhibition. In contrast to wild-type, surviving dopaminergic SN neurons of homozygous weaver mouse exclusively expressed SUR1 + Kir6.2 during the active period of dopaminergic neurodegeneration. Therefore, alternative expression of K-ATP channel subunits defines the differential response to metabolic stress and constitutes a novel candidate mechanism for the differential vulnerability of dopaminergic neurons in response to respiratory chain dysfunction in Parkinson's disease.

Full Text

The Full Text of this article is available as a PDF (675.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilar-Bryan L., Clement J. P., 4th, Gonzalez G., Kunjilwar K., Babenko A., Bryan J. Toward understanding the assembly and structure of KATP channels. Physiol Rev. 1998 Jan;78(1):227–245. doi: 10.1152/physrev.1998.78.1.227. [DOI] [PubMed] [Google Scholar]
  2. Aguilar-Bryan L., Nichols C. G., Wechsler S. W., Clement J. P., 4th, Boyd A. E., 3rd, González G., Herrera-Sosa H., Nguy K., Bryan J., Nelson D. A. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science. 1995 Apr 21;268(5209):423–426. doi: 10.1126/science.7716547. [DOI] [PubMed] [Google Scholar]
  3. Ashcroft F. M. Adenosine 5'-triphosphate-sensitive potassium channels. Annu Rev Neurosci. 1988;11:97–118. doi: 10.1146/annurev.ne.11.030188.000525. [DOI] [PubMed] [Google Scholar]
  4. Ashcroft F. M., Gribble F. M. Correlating structure and function in ATP-sensitive K+ channels. Trends Neurosci. 1998 Jul;21(7):288–294. doi: 10.1016/s0166-2236(98)01225-9. [DOI] [PubMed] [Google Scholar]
  5. Audinat E., Lambolez B., Rossier J. Functional and molecular analysis of glutamate-gated channels by patch-clamp and RT-PCR at the single cell level. Neurochem Int. 1996 Feb;28(2):119–136. doi: 10.1016/0197-0186(95)00075-5. [DOI] [PubMed] [Google Scholar]
  6. Babenko A. P., Aguilar-Bryan L., Bryan J. A view of sur/KIR6.X, KATP channels. Annu Rev Physiol. 1998;60:667–687. doi: 10.1146/annurev.physiol.60.1.667. [DOI] [PubMed] [Google Scholar]
  7. Bayer S. A., Wills K. V., Triarhou L. C., Verina T., Thomas J. D., Ghetti B. Selective vulnerability of late-generated dopaminergic neurons of the substantia nigra in weaver mutant mice. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9137–9140. doi: 10.1073/pnas.92.20.9137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Beal M. F. Mitochondria, free radicals, and neurodegeneration. Curr Opin Neurobiol. 1996 Oct;6(5):661–666. doi: 10.1016/s0959-4388(96)80100-0. [DOI] [PubMed] [Google Scholar]
  9. Brady P. A., Alekseev A. E., Terzic A. Operative condition-dependent response of cardiac ATP-sensitive K+ channels toward sulfonylureas. Circ Res. 1998 Feb 9;82(2):272–278. doi: 10.1161/01.res.82.2.272. [DOI] [PubMed] [Google Scholar]
  10. Brenner M. Structure and transcriptional regulation of the GFAP gene. Brain Pathol. 1994 Jul;4(3):245–257. doi: 10.1111/j.1750-3639.1994.tb00840.x. [DOI] [PubMed] [Google Scholar]
  11. Bryan J., Aguilar-Bryan L. The ABCs of ATP-sensitive potassium channels: more pieces of the puzzle. Curr Opin Cell Biol. 1997 Aug;9(4):553–559. doi: 10.1016/s0955-0674(97)80033-6. [DOI] [PubMed] [Google Scholar]
  12. Cauli B., Audinat E., Lambolez B., Angulo M. C., Ropert N., Tsuzuki K., Hestrin S., Rossier J. Molecular and physiological diversity of cortical nonpyramidal cells. J Neurosci. 1997 May 15;17(10):3894–3906. doi: 10.1523/JNEUROSCI.17-10-03894.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chutkow W. A., Simon M. C., Le Beau M. M., Burant C. F. Cloning, tissue expression, and chromosomal localization of SUR2, the putative drug-binding subunit of cardiac, skeletal muscle, and vascular KATP channels. Diabetes. 1996 Oct;45(10):1439–1445. doi: 10.2337/diab.45.10.1439. [DOI] [PubMed] [Google Scholar]
  14. Clement J. P., 4th, Kunjilwar K., Gonzalez G., Schwanstecher M., Panten U., Aguilar-Bryan L., Bryan J. Association and stoichiometry of K(ATP) channel subunits. Neuron. 1997 May;18(5):827–838. doi: 10.1016/s0896-6273(00)80321-9. [DOI] [PubMed] [Google Scholar]
  15. Condé H. Organization and physiology of the substantia nigra. Exp Brain Res. 1992;88(2):233–248. doi: 10.1007/BF02259099. [DOI] [PubMed] [Google Scholar]
  16. Dunn-Meynell A. A., Routh V. H., McArdle J. J., Levin B. E. Low-affinity sulfonylurea binding sites reside on neuronal cell bodies in the brain. Brain Res. 1997 Jan 16;745(1-2):1–9. doi: 10.1016/s0006-8993(96)01006-2. [DOI] [PubMed] [Google Scholar]
  17. Fujimura N., Tanaka E., Yamamoto S., Shigemori M., Higashi H. Contribution of ATP-sensitive potassium channels to hypoxic hyperpolarization in rat hippocampal CA1 neurons in vitro. J Neurophysiol. 1997 Jan;77(1):378–385. doi: 10.1152/jn.1997.77.1.378. [DOI] [PubMed] [Google Scholar]
  18. Gaspar P., Ben Jelloun N., Febvret A. Sparing of the dopaminergic neurons containing calbindin-D28k and of the dopaminergic mesocortical projections in weaver mutant mice. Neuroscience. 1994 Jul;61(2):293–305. doi: 10.1016/0306-4522(94)90232-1. [DOI] [PubMed] [Google Scholar]
  19. Grace A. A., Onn S. P. Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro. J Neurosci. 1989 Oct;9(10):3463–3481. doi: 10.1523/JNEUROSCI.09-10-03463.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Graybiel A. M., Ohta K., Roffler-Tarlov S. Patterns of cell and fiber vulnerability in the mesostriatal system of the mutant mouse weaver. I. Gradients and compartments. J Neurosci. 1990 Mar;10(3):720–733. doi: 10.1523/JNEUROSCI.10-03-00720.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gribble F. M., Ashfield R., Ammälä C., Ashcroft F. M. Properties of cloned ATP-sensitive K+ currents expressed in Xenopus oocytes. J Physiol. 1997 Jan 1;498(Pt 1):87–98. doi: 10.1113/jphysiol.1997.sp021843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gribble F. M., Tucker S. J., Seino S., Ashcroft F. M. Tissue specificity of sulfonylureas: studies on cloned cardiac and beta-cell K(ATP) channels. Diabetes. 1998 Sep;47(9):1412–1418. doi: 10.2337/diabetes.47.9.1412. [DOI] [PubMed] [Google Scholar]
  23. Hanna M. G., Bhatia K. P. Movement disorders and mitochondrial dysfunction. Curr Opin Neurol. 1997 Aug;10(4):351–356. doi: 10.1097/00019052-199708000-00012. [DOI] [PubMed] [Google Scholar]
  24. Hirsch E. C., Faucheux B., Damier P., Mouatt-Prigent A., Agid Y. Neuronal vulnerability in Parkinson's disease. J Neural Transm Suppl. 1997;50:79–88. doi: 10.1007/978-3-7091-6842-4_9. [DOI] [PubMed] [Google Scholar]
  25. Inagaki N., Gonoi T., Clement J. P., 4th, Namba N., Inazawa J., Gonzalez G., Aguilar-Bryan L., Seino S., Bryan J. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science. 1995 Nov 17;270(5239):1166–1170. doi: 10.1126/science.270.5239.1166. [DOI] [PubMed] [Google Scholar]
  26. Inagaki N., Gonoi T., Clement J. P., Wang C. Z., Aguilar-Bryan L., Bryan J., Seino S. A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron. 1996 May;16(5):1011–1017. doi: 10.1016/s0896-6273(00)80124-5. [DOI] [PubMed] [Google Scholar]
  27. Inagaki N., Tsuura Y., Namba N., Masuda K., Gonoi T., Horie M., Seino Y., Mizuta M., Seino S. Cloning and functional characterization of a novel ATP-sensitive potassium channel ubiquitously expressed in rat tissues, including pancreatic islets, pituitary, skeletal muscle, and heart. J Biol Chem. 1995 Mar 17;270(11):5691–5694. doi: 10.1074/jbc.270.11.5691. [DOI] [PubMed] [Google Scholar]
  28. Isomoto S., Kondo C., Yamada M., Matsumoto S., Higashiguchi O., Horio Y., Matsuzawa Y., Kurachi Y. A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type ATP-sensitive K+ channel. J Biol Chem. 1996 Oct 4;271(40):24321–24324. doi: 10.1074/jbc.271.40.24321. [DOI] [PubMed] [Google Scholar]
  29. Isomoto S., Kurachi Y. Function, regulation, pharmacology, and molecular structure of ATP-sensitive K+ channels in the cardiovascular system. J Cardiovasc Electrophysiol. 1997 Dec;8(12):1431–1446. doi: 10.1111/j.1540-8167.1997.tb01040.x. [DOI] [PubMed] [Google Scholar]
  30. Iwata N., Kobayashi K., Sasaoka T., Hidaka H., Nagatsu T. Structure of the mouse tyrosine hydroxylase gene. Biochem Biophys Res Commun. 1992 Jan 15;182(1):348–354. doi: 10.1016/s0006-291x(05)80151-2. [DOI] [PubMed] [Google Scholar]
  31. Johnson S. W., North R. A. Two types of neurone in the rat ventral tegmental area and their synaptic inputs. J Physiol. 1992 May;450:455–468. doi: 10.1113/jphysiol.1992.sp019136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Jonas P., Racca C., Sakmann B., Seeburg P. H., Monyer H. Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron. 1994 Jun;12(6):1281–1289. doi: 10.1016/0896-6273(94)90444-8. [DOI] [PubMed] [Google Scholar]
  33. Karschin A., Brockhaus J., Ballanyi K. KATP channel formation by the sulphonylurea receptors SUR1 with Kir6.2 subunits in rat dorsal vagal neurons in situ. J Physiol. 1998 Jun 1;509(Pt 2):339–346. doi: 10.1111/j.1469-7793.1998.339bn.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lacey M. G., Mercuri N. B., North R. A. Two cell types in rat substantia nigra zona compacta distinguished by membrane properties and the actions of dopamine and opioids. J Neurosci. 1989 Apr;9(4):1233–1241. doi: 10.1523/JNEUROSCI.09-04-01233.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Lee K., Dixon A. K., Freeman T. C., Richardson P. J. Identification of an ATP-sensitive potassium channel current in rat striatal cholinergic interneurones. J Physiol. 1998 Jul 15;510(Pt 2):441–453. doi: 10.1111/j.1469-7793.1998.441bk.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lesage F., Duprat F., Fink M., Guillemare E., Coppola T., Lazdunski M., Hugnot J. P. Cloning provides evidence for a family of inward rectifier and G-protein coupled K+ channels in the brain. FEBS Lett. 1994 Oct 10;353(1):37–42. doi: 10.1016/0014-5793(94)01007-2. [DOI] [PubMed] [Google Scholar]
  37. Mercuri N. B., Bonci A., Johnson S. W., Stratta F., Calabresi P., Bernardi G. Effects of anoxia on rat midbrain dopamine neurons. J Neurophysiol. 1994 Mar;71(3):1165–1173. doi: 10.1152/jn.1994.71.3.1165. [DOI] [PubMed] [Google Scholar]
  38. Monyer H., Lambolez B. Molecular biology and physiology at the single-cell level. Curr Opin Neurobiol. 1995 Jun;5(3):382–387. doi: 10.1016/0959-4388(95)80052-2. [DOI] [PubMed] [Google Scholar]
  39. Nelson E. L., Liang C. L., Sinton C. M., German D. C. Midbrain dopaminergic neurons in the mouse: computer-assisted mapping. J Comp Neurol. 1996 Jun 3;369(3):361–371. doi: 10.1002/(SICI)1096-9861(19960603)369:3<361::AID-CNE3>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  40. O'Dowd D. K., Smith M. A. Single-cell analysis of gene expression in the nervous system. Measurements at the edge of chaos. Mol Neurobiol. 1996 Dec;13(3):199–211. doi: 10.1007/BF02740623. [DOI] [PubMed] [Google Scholar]
  41. Okuyama Y., Yamada M., Kondo C., Satoh E., Isomoto S., Shindo T., Horio Y., Kitakaze M., Hori M., Kurachi Y. The effects of nucleotides and potassium channel openers on the SUR2A/Kir6.2 complex K+ channel expressed in a mammalian cell line, HEK293T cells. Pflugers Arch. 1998 Apr;435(5):595–603. doi: 10.1007/s004240050559. [DOI] [PubMed] [Google Scholar]
  42. Patil N., Cox D. R., Bhat D., Faham M., Myers R. M., Peterson A. S. A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat Genet. 1995 Oct;11(2):126–129. doi: 10.1038/ng1095-126. [DOI] [PubMed] [Google Scholar]
  43. Quayle J. M., Nelson M. T., Standen N. B. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol Rev. 1997 Oct;77(4):1165–1232. doi: 10.1152/physrev.1997.77.4.1165. [DOI] [PubMed] [Google Scholar]
  44. Richards C. D., Shiroyama T., Kitai S. T. Electrophysiological and immunocytochemical characterization of GABA and dopamine neurons in the substantia nigra of the rat. Neuroscience. 1997 Sep;80(2):545–557. doi: 10.1016/s0306-4522(97)00093-6. [DOI] [PubMed] [Google Scholar]
  45. Röper J., Ashcroft F. M. Metabolic inhibition and low internal ATP activate K-ATP channels in rat dopaminergic substantia nigra neurones. Pflugers Arch. 1995 May;430(1):44–54. doi: 10.1007/BF00373838. [DOI] [PubMed] [Google Scholar]
  46. Sakura H., Ammälä C., Smith P. A., Gribble F. M., Ashcroft F. M. Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel subunit expressed in pancreatic beta-cells, brain, heart and skeletal muscle. FEBS Lett. 1995 Dec 27;377(3):338–344. doi: 10.1016/0014-5793(95)01369-5. [DOI] [PubMed] [Google Scholar]
  47. Schreiber S. S., Baudry M. Selective neuronal vulnerability in the hippocampus--a role for gene expression? Trends Neurosci. 1995 Oct;18(10):446–451. doi: 10.1016/0166-2236(95)94495-q. [DOI] [PubMed] [Google Scholar]
  48. Schwanstecher C., Panten U. Tolbutamide- and diazoxide-sensitive K+ channel in neurons of substantia nigra pars reticulata. Naunyn Schmiedebergs Arch Pharmacol. 1993 Jul;348(1):113–117. doi: 10.1007/BF00168546. [DOI] [PubMed] [Google Scholar]
  49. Seutin V., Shen K. Z., North R. A., Johnson S. W. Sulfonylurea-sensitive potassium current evoked by sodium-loading in rat midbrain dopamine neurons. Neuroscience. 1996 Apr;71(3):709–719. doi: 10.1016/0306-4522(95)00489-0. [DOI] [PubMed] [Google Scholar]
  50. Spanswick D., Smith M. A., Groppi V. E., Logan S. D., Ashford M. L. Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature. 1997 Dec 4;390(6659):521–525. doi: 10.1038/37379. [DOI] [PubMed] [Google Scholar]
  51. Stanford I. M., Lacey M. G. Electrophysiological investigation of adenosine trisphosphate-sensitive potassium channels in the rat substantia nigra pars reticulata. Neuroscience. 1996 Sep;74(2):499–509. doi: 10.1016/0306-4522(96)00151-0. [DOI] [PubMed] [Google Scholar]
  52. Stanford I. M., Lacey M. G. Regulation of a potassium conductance in rat midbrain dopamine neurons by intracellular adenosine triphosphate (ATP) and the sulfonylureas tolbutamide and glibenclamide. J Neurosci. 1995 Jun;15(6):4651–4657. doi: 10.1523/JNEUROSCI.15-06-04651.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Stuart G. J., Dodt H. U., Sakmann B. Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflugers Arch. 1993 Jun;423(5-6):511–518. doi: 10.1007/BF00374949. [DOI] [PubMed] [Google Scholar]
  54. Surmeier D. J., Song W. J., Yan Z. Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci. 1996 Oct 15;16(20):6579–6591. doi: 10.1523/JNEUROSCI.16-20-06579.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Szabó G., Katarova Z., Körtvély E., Greenspan R. J., Urbán Z. Structure and the promoter region of the mouse gene encoding the 67-kD form of glutamic acid decarboxylase. DNA Cell Biol. 1996 Dec;15(12):1081–1091. doi: 10.1089/dna.1996.15.1081. [DOI] [PubMed] [Google Scholar]
  56. Trapp S., Ballanyi K. KATP channel mediation of anoxia-induced outward current in rat dorsal vagal neurons in vitro. J Physiol. 1995 Aug 15;487(1):37–50. doi: 10.1113/jphysiol.1995.sp020859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Verney C., Febvret-Muzerelle A., Gaspar P. Early postnatal changes of the dopaminergic mesencephalic neurons in the weaver mutant mouse. Brain Res Dev Brain Res. 1995 Oct 27;89(1):115–119. doi: 10.1016/0165-3806(95)00106-n. [DOI] [PubMed] [Google Scholar]
  58. Watts A. E., Hicks G. A., Henderson G. Putative pre- and postsynaptic ATP-sensitive potassium channels in the rat substantia nigra in vitro. J Neurosci. 1995 Apr;15(4):3065–3074. doi: 10.1523/JNEUROSCI.15-04-03065.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Yamada M., Isomoto S., Matsumoto S., Kondo C., Shindo T., Horio Y., Kurachi Y. Sulphonylurea receptor 2B and Kir6.1 form a sulphonylurea-sensitive but ATP-insensitive K+ channel. J Physiol. 1997 Mar 15;499(Pt 3):715–720. doi: 10.1113/jphysiol.1997.sp021963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Yokoshiki H., Sunagawa M., Seki T., Sperelakis N. ATP-sensitive K+ channels in pancreatic, cardiac, and vascular smooth muscle cells. Am J Physiol. 1998 Jan;274(1 Pt 1):C25–C37. doi: 10.1152/ajpcell.1998.274.1.C25. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES