Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Feb 15;18(4):863–870. doi: 10.1093/emboj/18.4.863

Binding of the G domains of laminin alpha1 and alpha2 chains and perlecan to heparin, sulfatides, alpha-dystroglycan and several extracellular matrix proteins.

J F Talts 1, Z Andac 1, W Göhring 1, A Brancaccio 1, R Timpl 1
PMCID: PMC1171179  PMID: 10022829

Abstract

The C-terminal G domain of the mouse laminin alpha2 chain consists of five lamin-type G domain (LG) modules (alpha2LG1 to alpha2LG5) and was obtained as several recombinant fragments, corresponding to either individual modules or the tandem arrays alpha2LG1-3 and alpha2LG4-5. These fragments were compared with similar modules from the laminin alpha1 chain and from the C-terminal region of perlecan (PGV) in several binding studies. Major heparin-binding sites were located on the two tandem fragments and the individual alpha2LG1, alpha2LG3 and alpha2LG5 modules. The binding epitope on alpha2LG5 could be localized to a cluster of lysines by site-directed mutagenesis. In the alpha1 chain, however, strong heparin binding was found on alpha1LG4 and not on alpha1LG5. Binding to sulfatides correlated to heparin binding in most but not all cases. Fragments alpha2LG1-3 and alpha2LG4-5 also bound to fibulin-1, fibulin-2 and nidogen-2 with Kd = 13-150 nM. Both tandem fragments, but not the individual modules, bound strongly to alpha-dystroglycan and this interaction was abolished by EDTA but not by high concentrations of heparin and NaCl. The binding of perlecan fragment PGV to alpha-dystroglycan was even stronger and was also not sensitive to heparin. This demonstrated similar binding repertoires for the LG modules of three basement membrane proteins involved in cell-matrix interactions and supramolecular assembly.

Full Text

The Full Text of this article is available as a PDF (247.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aumailley M., Wiedemann H., Mann K., Timpl R. Binding of nidogen and the laminin-nidogen complex to basement membrane collagen type IV. Eur J Biochem. 1989 Sep 1;184(1):241–248. doi: 10.1111/j.1432-1033.1989.tb15013.x. [DOI] [PubMed] [Google Scholar]
  2. Bernier S. M., Utani A., Sugiyama S., Doi T., Polistina C., Yamada Y. Cloning and expression of laminin alpha 2 chain (M-chain) in the mouse. Matrix Biol. 1995 Feb;14(6):447–455. doi: 10.1016/0945-053x(95)90002-0. [DOI] [PubMed] [Google Scholar]
  3. Bork P., Downing A. K., Kieffer B., Campbell I. D. Structure and distribution of modules in extracellular proteins. Q Rev Biophys. 1996 May;29(2):119–167. doi: 10.1017/s0033583500005783. [DOI] [PubMed] [Google Scholar]
  4. Brancaccio A., Schulthess T., Gesemann M., Engel J. Electron microscopic evidence for a mucin-like region in chick muscle alpha-dystroglycan. FEBS Lett. 1995 Jul 10;368(1):139–142. doi: 10.1016/0014-5793(95)00628-m. [DOI] [PubMed] [Google Scholar]
  5. Brown J. C., Sasaki T., Göhring W., Yamada Y., Timpl R. The C-terminal domain V of perlecan promotes beta1 integrin-mediated cell adhesion, binds heparin, nidogen and fibulin-2 and can be modified by glycosaminoglycans. Eur J Biochem. 1997 Nov 15;250(1):39–46. doi: 10.1111/j.1432-1033.1997.t01-1-00039.x. [DOI] [PubMed] [Google Scholar]
  6. Brown J. C., Wiedemann H., Timpl R. Protein binding and cell adhesion properties of two laminin isoforms (AmB1eB2e, AmB1sB2e) from human placenta. J Cell Sci. 1994 Jan;107(Pt 1):329–338. doi: 10.1242/jcs.107.1.329. [DOI] [PubMed] [Google Scholar]
  7. Cheng Y. S., Champliaud M. F., Burgeson R. E., Marinkovich M. P., Yurchenco P. D. Self-assembly of laminin isoforms. J Biol Chem. 1997 Dec 12;272(50):31525–31532. doi: 10.1074/jbc.272.50.31525. [DOI] [PubMed] [Google Scholar]
  8. Costell M., Mann K., Yamada Y., Timpl R. Characterization of recombinant perlecan domain I and its substitution by glycosaminoglycans and oligosaccharides. Eur J Biochem. 1997 Jan 15;243(1-2):115–121. doi: 10.1111/j.1432-1033.1997.t01-1-00115.x. [DOI] [PubMed] [Google Scholar]
  9. Deutzmann R., Huber J., Schmetz K. A., Oberbäumer I., Hartl L. Structural study of long arm fragments of laminin. Evidence for repetitive C-terminal sequences in the A-chain, not present in the B-chains. Eur J Biochem. 1988 Oct 15;177(1):35–45. doi: 10.1111/j.1432-1033.1988.tb14342.x. [DOI] [PubMed] [Google Scholar]
  10. Engvall E., Earwicker D., Haaparanta T., Ruoslahti E., Sanes J. R. Distribution and isolation of four laminin variants; tissue restricted distribution of heterotrimers assembled from five different subunits. Cell Regul. 1990 Sep;1(10):731–740. doi: 10.1091/mbc.1.10.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ettner N., Göhring W., Sasaki T., Mann K., Timpl R. The N-terminal globular domain of the laminin alpha1 chain binds to alpha1beta1 and alpha2beta1 integrins and to the heparan sulfate-containing domains of perlecan. FEBS Lett. 1998 Jul 3;430(3):217–221. doi: 10.1016/s0014-5793(98)00601-2. [DOI] [PubMed] [Google Scholar]
  12. Fox J. W., Mayer U., Nischt R., Aumailley M., Reinhardt D., Wiedemann H., Mann K., Timpl R., Krieg T., Engel J. Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV. EMBO J. 1991 Nov;10(11):3137–3146. doi: 10.1002/j.1460-2075.1991.tb04875.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gee S. H., Blacher R. W., Douville P. J., Provost P. R., Yurchenco P. D., Carbonetto S. Laminin-binding protein 120 from brain is closely related to the dystrophin-associated glycoprotein, dystroglycan, and binds with high affinity to the major heparin binding domain of laminin. J Biol Chem. 1993 Jul 15;268(20):14972–14980. [PubMed] [Google Scholar]
  14. Gee S. H., Montanaro F., Lindenbaum M. H., Carbonetto S. Dystroglycan-alpha, a dystrophin-associated glycoprotein, is a functional agrin receptor. Cell. 1994 Jun 3;77(5):675–686. doi: 10.1016/0092-8674(94)90052-3. [DOI] [PubMed] [Google Scholar]
  15. Gesemann M., Brancaccio A., Schumacher B., Ruegg M. A. Agrin is a high-affinity binding protein of dystroglycan in non-muscle tissue. J Biol Chem. 1998 Jan 2;273(1):600–605. doi: 10.1074/jbc.273.1.600. [DOI] [PubMed] [Google Scholar]
  16. Gesemann M., Cavalli V., Denzer A. J., Brancaccio A., Schumacher B., Ruegg M. A. Alternative splicing of agrin alters its binding to heparin, dystroglycan, and the putative agrin receptor. Neuron. 1996 Apr;16(4):755–767. doi: 10.1016/s0896-6273(00)80096-3. [DOI] [PubMed] [Google Scholar]
  17. Göhring W., Sasaki T., Heldin C. H., Timpl R. Mapping of the binding of platelet-derived growth factor to distinct domains of the basement membrane proteins BM-40 and perlecan and distinction from the BM-40 collagen-binding epitope. Eur J Biochem. 1998 Jul 1;255(1):60–66. doi: 10.1046/j.1432-1327.1998.2550060.x. [DOI] [PubMed] [Google Scholar]
  18. Helbling-Leclerc A., Zhang X., Topaloglu H., Cruaud C., Tesson F., Weissenbach J., Tomé F. M., Schwartz K., Fardeau M., Tryggvason K. Mutations in the laminin alpha 2-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy. Nat Genet. 1995 Oct;11(2):216–218. doi: 10.1038/ng1095-216. [DOI] [PubMed] [Google Scholar]
  19. Henry M. D., Campbell K. P. Dystroglycan: an extracellular matrix receptor linked to the cytoskeleton. Curr Opin Cell Biol. 1996 Oct;8(5):625–631. doi: 10.1016/s0955-0674(96)80103-7. [DOI] [PubMed] [Google Scholar]
  20. Hopf C., Hoch W. Agrin binding to alpha-dystroglycan. Domains of agrin necessary to induce acetylcholine receptor clustering are overlapping but not identical to the alpha-dystroglycan-binding region. J Biol Chem. 1996 Mar 1;271(9):5231–5236. doi: 10.1074/jbc.271.9.5231. [DOI] [PubMed] [Google Scholar]
  21. Joseph D. R., Baker M. E. Sex hormone-binding globulin, androgen-binding protein, and vitamin K-dependent protein S are homologous to laminin A, merosin, and Drosophila crumbs protein. FASEB J. 1992 Apr;6(7):2477–2481. doi: 10.1096/fasebj.6.7.1532944. [DOI] [PubMed] [Google Scholar]
  22. Kalb E., Engel J. Binding and calcium-induced aggregation of laminin onto lipid bilayers. J Biol Chem. 1991 Oct 5;266(28):19047–19052. [PubMed] [Google Scholar]
  23. Kohfeldt E., Maurer P., Vannahme C., Timpl R. Properties of the extracellular calcium binding module of the proteoglycan testican. FEBS Lett. 1997 Sep 15;414(3):557–561. doi: 10.1016/s0014-5793(97)01070-3. [DOI] [PubMed] [Google Scholar]
  24. Kohfeldt E., Sasaki T., Göhring W., Timpl R. Nidogen-2: a new basement membrane protein with diverse binding properties. J Mol Biol. 1998 Sep 11;282(1):99–109. doi: 10.1006/jmbi.1998.2004. [DOI] [PubMed] [Google Scholar]
  25. Lander A. D. Targeting the glycosaminoglycan-binding sites on proteins. Chem Biol. 1994 Oct;1(2):73–78. doi: 10.1016/1074-5521(94)90043-4. [DOI] [PubMed] [Google Scholar]
  26. Manfioletti G., Brancolini C., Avanzi G., Schneider C. The protein encoded by a growth arrest-specific gene (gas6) is a new member of the vitamin K-dependent proteins related to protein S, a negative coregulator in the blood coagulation cascade. Mol Cell Biol. 1993 Aug;13(8):4976–4985. doi: 10.1128/mcb.13.8.4976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mark M. R., Chen J., Hammonds R. G., Sadick M., Godowsk P. J. Characterization of Gas6, a member of the superfamily of G domain-containing proteins, as a ligand for Rse and Axl. J Biol Chem. 1996 Apr 19;271(16):9785–9789. doi: 10.1074/jbc.271.16.9785. [DOI] [PubMed] [Google Scholar]
  28. Maurer P., Hohenadl C., Hohenester E., Göhring W., Timpl R., Engel J. The C-terminal portion of BM-40 (SPARC/osteonectin) is an autonomously folding and crystallisable domain that binds calcium and collagen IV. J Mol Biol. 1995 Oct 20;253(2):347–357. doi: 10.1006/jmbi.1995.0557. [DOI] [PubMed] [Google Scholar]
  29. McDearmon E. L., Burwell A. L., Combs A. C., Renley B. A., Sdano M. T., Ervasti J. M. Differential heparin sensitivity of alpha-dystroglycan binding to laminins expressed in normal and dy/dy mouse skeletal muscle. J Biol Chem. 1998 Sep 11;273(37):24139–24144. doi: 10.1074/jbc.273.37.24139. [DOI] [PubMed] [Google Scholar]
  30. McMahan U. J., Horton S. E., Werle M. J., Honig L. S., Kröger S., Ruegg M. A., Escher G. Agrin isoforms and their role in synaptogenesis. Curr Opin Cell Biol. 1992 Oct;4(5):869–874. doi: 10.1016/0955-0674(92)90113-q. [DOI] [PubMed] [Google Scholar]
  31. Miner J. H., Patton B. L., Lentz S. I., Gilbert D. J., Snider W. D., Jenkins N. A., Copeland N. G., Sanes J. R. The laminin alpha chains: expression, developmental transitions, and chromosomal locations of alpha1-5, identification of heterotrimeric laminins 8-11, and cloning of a novel alpha3 isoform. J Cell Biol. 1997 May 5;137(3):685–701. doi: 10.1083/jcb.137.3.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Miyagoe Y., Hanaoka K., Nonaka I., Hayasaka M., Nabeshima Y., Arahata K., Nabeshima Y., Takeda S. Laminin alpha2 chain-null mutant mice by targeted disruption of the Lama2 gene: a new model of merosin (laminin 2)-deficient congenital muscular dystrophy. FEBS Lett. 1997 Sep 22;415(1):33–39. doi: 10.1016/s0014-5793(97)01007-7. [DOI] [PubMed] [Google Scholar]
  33. Nischt R., Pottgiesser J., Krieg T., Mayer U., Aumailley M., Timpl R. Recombinant expression and properties of the human calcium-binding extracellular matrix protein BM-40. Eur J Biochem. 1991 Sep 1;200(2):529–536. doi: 10.1111/j.1432-1033.1991.tb16214.x. [DOI] [PubMed] [Google Scholar]
  34. Noonan D. M., Fulle A., Valente P., Cai S., Horigan E., Sasaki M., Yamada Y., Hassell J. R. The complete sequence of perlecan, a basement membrane heparan sulfate proteoglycan, reveals extensive similarity with laminin A chain, low density lipoprotein-receptor, and the neural cell adhesion molecule. J Biol Chem. 1991 Dec 5;266(34):22939–22947. [PubMed] [Google Scholar]
  35. Ott U., Odermatt E., Engel J., Furthmayr H., Timpl R. Protease resistance and conformation of laminin. Eur J Biochem. 1982 Mar;123(1):63–72. doi: 10.1111/j.1432-1033.1982.tb06499.x. [DOI] [PubMed] [Google Scholar]
  36. Pall E. A., Bolton K. M., Ervasti J. M. Differential heparin inhibition of skeletal muscle alpha-dystroglycan binding to laminins. J Biol Chem. 1996 Feb 16;271(7):3817–3821. doi: 10.1074/jbc.271.7.3817. [DOI] [PubMed] [Google Scholar]
  37. Pan T. C., Kluge M., Zhang R. Z., Mayer U., Timpl R., Chu M. L. Sequence of extracellular mouse protein BM-90/fibulin and its calcium-dependent binding to other basement-membrane ligands. Eur J Biochem. 1993 Aug 1;215(3):733–740. doi: 10.1111/j.1432-1033.1993.tb18086.x. [DOI] [PubMed] [Google Scholar]
  38. Pan T. C., Sasaki T., Zhang R. Z., Fässler R., Timpl R., Chu M. L. Structure and expression of fibulin-2, a novel extracellular matrix protein with multiple EGF-like repeats and consensus motifs for calcium binding. J Cell Biol. 1993 Dec;123(5):1269–1277. doi: 10.1083/jcb.123.5.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Patthy L. A family of laminin-related proteins controlling ectodermal differentiation in Drosophila. FEBS Lett. 1992 Feb 24;298(2-3):182–184. doi: 10.1016/0014-5793(92)80051-h. [DOI] [PubMed] [Google Scholar]
  40. Patthy L., Nikolics K. Functions of agrin and agrin-related proteins. Trends Neurosci. 1993 Feb;16(2):76–81. doi: 10.1016/0166-2236(93)90021-d. [DOI] [PubMed] [Google Scholar]
  41. Peng H. B., Ali A. A., Daggett D. F., Rauvala H., Hassell J. R., Smalheiser N. R. The relationship between perlecan and dystroglycan and its implication in the formation of the neuromuscular junction. Cell Adhes Commun. 1998 Sep;5(6):475–489. doi: 10.3109/15419069809005605. [DOI] [PubMed] [Google Scholar]
  42. Rambukkana A., Salzer J. L., Yurchenco P. D., Tuomanen E. I. Neural targeting of Mycobacterium leprae mediated by the G domain of the laminin-alpha2 chain. Cell. 1997 Mar 21;88(6):811–821. doi: 10.1016/s0092-8674(00)81927-3. [DOI] [PubMed] [Google Scholar]
  43. Roberts D. D. Sulfatide-binding proteins. Methods Enzymol. 1987;138:473–483. doi: 10.1016/0076-6879(87)38040-1. [DOI] [PubMed] [Google Scholar]
  44. Sasaki T., Costell M., Mann K., Timpl R. Inhibition of glycosaminoglycan modification of perlecan domain I by site-directed mutagenesis changes protease sensitivity and laminin-1 binding activity. FEBS Lett. 1998 Sep 18;435(2-3):169–172. doi: 10.1016/s0014-5793(98)01063-1. [DOI] [PubMed] [Google Scholar]
  45. Sasaki T., Kostka G., Göhring W., Wiedemann H., Mann K., Chu M. L., Timpl R. Structural characterization of two variants of fibulin-1 that differ in nidogen affinity. J Mol Biol. 1995 Jan 20;245(3):241–250. doi: 10.1006/jmbi.1994.0020. [DOI] [PubMed] [Google Scholar]
  46. Schulze B., Mann K., Battistutta R., Wiedemann H., Timpl R. Structural properties of recombinant domain III-3 of perlecan containing a globular domain inserted into an epidermal-growth-factor-like motif. Eur J Biochem. 1995 Aug 1;231(3):551–556. doi: 10.1111/j.1432-1033.1995.tb20731.x. [DOI] [PubMed] [Google Scholar]
  47. Smalheiser N. R. Cranin interacts specifically with the sulfatide-binding domain of laminin. J Neurosci Res. 1993 Dec 1;36(5):528–538. doi: 10.1002/jnr.490360505. [DOI] [PubMed] [Google Scholar]
  48. Stolz M., Timpl R., Kühn K. Non-helical regions in rat collagen 1-chain. FEBS Lett. 1972 Oct 1;26(1):61–65. doi: 10.1016/0014-5793(72)80542-8. [DOI] [PubMed] [Google Scholar]
  49. Takahashi K. The reaction of phenylglyoxal with arginine residues in proteins. J Biol Chem. 1968 Dec 10;243(23):6171–6179. [PubMed] [Google Scholar]
  50. Talts J. F., Mann K., Yamada Y., Timpl R. Structural analysis and proteolytic processing of recombinant G domain of mouse laminin alpha2 chain. FEBS Lett. 1998 Apr 10;426(1):71–76. doi: 10.1016/s0014-5793(98)00312-3. [DOI] [PubMed] [Google Scholar]
  51. Taraboletti G., Rao C. N., Krutzsch H. C., Liotta L. A., Roberts D. D. Sulfatide-binding domain of the laminin A chain. J Biol Chem. 1990 Jul 25;265(21):12253–12258. [PubMed] [Google Scholar]
  52. Timpl R. Macromolecular organization of basement membranes. Curr Opin Cell Biol. 1996 Oct;8(5):618–624. doi: 10.1016/s0955-0674(96)80102-5. [DOI] [PubMed] [Google Scholar]
  53. Timpl R., Paulsson M., Dziadek M., Fujiwara S. Basement membranes. Methods Enzymol. 1987;145:363–391. doi: 10.1016/0076-6879(87)45021-0. [DOI] [PubMed] [Google Scholar]
  54. Timpl R. Proteoglycans of basement membranes. Experientia. 1993 May 15;49(5):417–428. doi: 10.1007/BF01923586. [DOI] [PubMed] [Google Scholar]
  55. Ushkaryov Y. A., Petrenko A. G., Geppert M., Südhof T. C. Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. Science. 1992 Jul 3;257(5066):50–56. doi: 10.1126/science.1621094. [DOI] [PubMed] [Google Scholar]
  56. Williamson R. A., Henry M. D., Daniels K. J., Hrstka R. F., Lee J. C., Sunada Y., Ibraghimov-Beskrovnaya O., Campbell K. P. Dystroglycan is essential for early embryonic development: disruption of Reichert's membrane in Dag1-null mice. Hum Mol Genet. 1997 Jun;6(6):831–841. doi: 10.1093/hmg/6.6.831. [DOI] [PubMed] [Google Scholar]
  57. Xu H., Wu X. R., Wewer U. M., Engvall E. Murine muscular dystrophy caused by a mutation in the laminin alpha 2 (Lama2) gene. Nat Genet. 1994 Nov;8(3):297–302. doi: 10.1038/ng1194-297. [DOI] [PubMed] [Google Scholar]
  58. Yamada H., Denzer A. J., Hori H., Tanaka T., Anderson L. V., Fujita S., Fukuta-Ohi H., Shimizu T., Ruegg M. A., Matsumura K. Dystroglycan is a dual receptor for agrin and laminin-2 in Schwann cell membrane. J Biol Chem. 1996 Sep 20;271(38):23418–23423. doi: 10.1074/jbc.271.38.23418. [DOI] [PubMed] [Google Scholar]
  59. Yamada H., Shimizu T., Tanaka T., Campbell K. P., Matsumura K. Dystroglycan is a binding protein of laminin and merosin in peripheral nerve. FEBS Lett. 1994 Sep 19;352(1):49–53. doi: 10.1016/0014-5793(94)00917-1. [DOI] [PubMed] [Google Scholar]
  60. Yurchenco P. D., Sung U., Ward M. D., Yamada Y., O'Rear J. J. Recombinant laminin G domain mediates myoblast adhesion and heparin binding. J Biol Chem. 1993 Apr 15;268(11):8356–8365. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES