Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Feb 15;18(4):992–1002. doi: 10.1093/emboj/18.4.992

Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants.

Y Sato 1, N Sentoku 1, Y Miura 1, H Hirochika 1, H Kitano 1, M Matsuoka 1
PMCID: PMC1171191  PMID: 10022841

Abstract

The rice homeobox gene OSH15 (Oryza sativa homeobox) is a member of the knotted1-type homeobox gene family. We report here on the identification and characterization of a loss-of-function mutation in OSH15 from a library of retrotransposon-tagged lines of rice. Based on the phenotype and map position, we have identified three independent deletion alleles of the locus among conventional morphological mutants. All of these recessive mutations, which are considered to be null alleles, exhibit defects in internode elongation. Introduction of a 14 kbp genomic DNA fragment that includes all exons, introns and 5'- and 3'- flanking sequences of OSH15 complemented the defects in internode elongation, confirming that they were caused by the loss-of-function of OSH15. Internodes of the mutants had abnormal-shaped epidermal and hypodermal cells and showed an unusual arrangement of small vascular bundles. These mutations demonstrate a role for OSH15 in the development of rice internodes. This is the first evidence that the knotted1-type homeobox genes have roles other than shoot apical meristem formation and/or maintenance in plant development.

Full Text

The Full Text of this article is available as a PDF (787.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn S., Tanksley S. D. Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7980–7984. doi: 10.1073/pnas.90.17.7980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ballinger D. G., Benzer S. Targeted gene mutations in Drosophila. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9402–9406. doi: 10.1073/pnas.86.23.9402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen J. J., Janssen B. J., Williams A., Sinha N. A gene fusion at a homeobox locus: alterations in leaf shape and implications for morphological evolution. Plant Cell. 1997 Aug;9(8):1289–1304. doi: 10.1105/tpc.9.8.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Chuck G., Lincoln C., Hake S. KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell. 1996 Aug;8(8):1277–1289. doi: 10.1105/tpc.8.8.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clark S. E., Jacobsen S. E., Levin J. Z., Meyerowitz E. M. The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development. 1996 May;122(5):1567–1575. doi: 10.1242/dev.122.5.1567. [DOI] [PubMed] [Google Scholar]
  8. Clark S. E., Williams R. W., Meyerowitz E. M. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell. 1997 May 16;89(4):575–585. doi: 10.1016/s0092-8674(00)80239-1. [DOI] [PubMed] [Google Scholar]
  9. Gehring W. J., Affolter M., Bürglin T. Homeodomain proteins. Annu Rev Biochem. 1994;63:487–526. doi: 10.1146/annurev.bi.63.070194.002415. [DOI] [PubMed] [Google Scholar]
  10. Gehring W. J. The homeobox in perspective. Trends Biochem Sci. 1992 Aug;17(8):277–280. doi: 10.1016/0968-0004(92)90434-b. [DOI] [PubMed] [Google Scholar]
  11. Hareven D., Gutfinger T., Parnis A., Eshed Y., Lifschitz E. The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell. 1996 Mar 8;84(5):735–744. doi: 10.1016/s0092-8674(00)81051-x. [DOI] [PubMed] [Google Scholar]
  12. Helentjaris T., Weber D., Wright S. Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms. Genetics. 1988 Feb;118(2):353–363. doi: 10.1093/genetics/118.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hiei Y., Ohta S., Komari T., Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 1994 Aug;6(2):271–282. doi: 10.1046/j.1365-313x.1994.6020271.x. [DOI] [PubMed] [Google Scholar]
  14. Hirochika H. Retrotransposons of rice: their regulation and use for genome analysis. Plant Mol Biol. 1997 Sep;35(1-2):231–240. [PubMed] [Google Scholar]
  15. Hirochika H., Sugimoto K., Otsuki Y., Tsugawa H., Kanda M. Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7783–7788. doi: 10.1073/pnas.93.15.7783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hood E. E., Helmer G. L., Fraley R. T., Chilton M. D. The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol. 1986 Dec;168(3):1291–1301. doi: 10.1128/jb.168.3.1291-1301.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kaiser K., Goodwin S. F. "Site-selected" transposon mutagenesis of Drosophila. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1686–1690. doi: 10.1073/pnas.87.5.1686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kerstetter R. A., Laudencia-Chingcuanco D., Smith L. G., Hake S. Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development. 1997 Aug;124(16):3045–3054. doi: 10.1242/dev.124.16.3045. [DOI] [PubMed] [Google Scholar]
  19. Kerstetter R., Vollbrecht E., Lowe B., Veit B., Yamaguchi J., Hake S. Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. Plant Cell. 1994 Dec;6(12):1877–1887. doi: 10.1105/tpc.6.12.1877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kouchi H., Hata S. Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol Gen Genet. 1993 Apr;238(1-2):106–119. doi: 10.1007/BF00279537. [DOI] [PubMed] [Google Scholar]
  21. Lincoln C., Long J., Yamaguchi J., Serikawa K., Hake S. A knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell. 1994 Dec;6(12):1859–1876. doi: 10.1105/tpc.6.12.1859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Long J. A., Moan E. I., Medford J. I., Barton M. K. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature. 1996 Jan 4;379(6560):66–69. doi: 10.1038/379066a0. [DOI] [PubMed] [Google Scholar]
  23. Lu P., Porat R., Nadeau J. A., O'Neill S. D. Identification of a meristem L1 layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homeobox genes. Plant Cell. 1996 Dec;8(12):2155–2168. doi: 10.1105/tpc.8.12.2155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Manak J. R., Scott M. P. A class act: conservation of homeodomain protein functions. Dev Suppl. 1994:61–77. [PubMed] [Google Scholar]
  25. Matsuoka M., Ichikawa H., Saito A., Tada Y., Fujimura T., Kano-Murakami Y. Expression of a rice homeobox gene causes altered morphology of transgenic plants. Plant Cell. 1993 Sep;5(9):1039–1048. doi: 10.1105/tpc.5.9.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Müller K. J., Romano N., Gerstner O., Garcia-Maroto F., Pozzi C., Salamini F., Rohde W. The barley Hooded mutation caused by a duplication in a homeobox gene intron. Nature. 1995 Apr 20;374(6524):727–730. doi: 10.1038/374727a0. [DOI] [PubMed] [Google Scholar]
  27. Sato Y., Hong S. K., Tagiri A., Kitano H., Yamamoto N., Nagato Y., Matsuoka M. A rice homeobox gene, OSH1, is expressed before organ differentiation in a specific region during early embryogenesis. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8117–8122. doi: 10.1073/pnas.93.15.8117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sato Y., Sentoku N., Nagato Y., Matsuoka M. Isolation and characterization of a rice homebox gene, OSH15. Plant Mol Biol. 1998 Dec;38(6):983–998. doi: 10.1023/a:1006065622251. [DOI] [PubMed] [Google Scholar]
  29. Schneeberger R. G., Becraft P. W., Hake S., Freeling M. Ectopic expression of the knox homeo box gene rough sheath1 alters cell fate in the maize leaf. Genes Dev. 1995 Sep 15;9(18):2292–2304. doi: 10.1101/gad.9.18.2292. [DOI] [PubMed] [Google Scholar]
  30. Sinha N. R., Williams R. E., Hake S. Overexpression of the maize homeo box gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates. Genes Dev. 1993 May;7(5):787–795. doi: 10.1101/gad.7.5.787. [DOI] [PubMed] [Google Scholar]
  31. Smith L. G., Greene B., Veit B., Hake S. A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development. 1992 Sep;116(1):21–30. doi: 10.1242/dev.116.1.21. [DOI] [PubMed] [Google Scholar]
  32. Tamaoki M., Kusaba S., Kano-Murakami Y., Matsuoka M. Ectopic expression of a tobacco homeobox gene, NTH15, dramatically alters leaf morphology and hormone levels in transgenic tobacco. Plant Cell Physiol. 1997 Aug;38(8):917–927. doi: 10.1093/oxfordjournals.pcp.a029252. [DOI] [PubMed] [Google Scholar]
  33. Vollbrecht E., Veit B., Sinha N., Hake S. The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature. 1991 Mar 21;350(6315):241–243. doi: 10.1038/350241a0. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES